Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán 12 năm học 2018 - 2019 sở GDĐT Nam Định

Đề thi học sinh giỏi Toán 12 năm học 2018 – 2019 sở GD&ĐT Nam Định gồm 2 bài thi độc lập: Toán trắc nghiệm và Toán tự luận, bài thi Toán trắc nghiệm gồm 40 câu, thời gian làm bài 60 phút, bài thi Toán tự luận gồm 5 câu, thời gian làm bài 75 phút. Kỳ thi nhằm tuyển chọn những em học sinh khối 12 giỏi môn Toán để tuyên dương, khen thưởng, làm tấm gương cho các học sinh khác noi theo, đồng thời thành lập đội tuyển học sinh giỏi Toán 12 tỉnh Nam Định tham dự kỳ thi HSG Toán 12 cấp Quốc gia. Trích dẫn đề thi học sinh giỏi Toán 12 năm học 2018 – 2019 sở GD&ĐT Nam Định : + Cho hai mặt phẳng (P), (Q) song song với nhau cắt khối cầu tâm O, bán kính R tạo thành hai hình tròn cùng bán kính. Xét hình nón có đỉnh trùng với tâm của một trong hai hình tròn, đáy trùng với hình tròn còn lại. Tính khoảng cách giữa (P), (Q) để diện tích xung quanh của hình nón là lớn nhất. [ads] + Cho tập X = {1;2;3;…;8}. Gọi A là tập các số tự nhiên có 8 chữ số đôi một khác nhau được lập từ X. Lấy ngẫu nhiên một số từ tập A. Tính xác suất để số được lấy chia hết cho 2222. + Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD), đáy ABCD là hình thang vuông tại A và B, AD = 3BC = 3a, AB = a, SA = a√3. Gọi M là trung điểm SD và I thỏa mãn AD = 3AI. a) Tính thể tích của khối tứ diện CDIM. Tính góc giữa hai đường thẳng AM và SC. b) Gọi E, F lần lượt là hình chiếu của A trên các cạnh SB, SC và H là giao điểm của SI và AM. Tính thể tích của khối nón có đáy là đường tròn ngoại tiếp tam giác EFH và đỉnh thuộc mặt phẳng (ABCD).

Nguồn: toanmath.com

Đọc Sách

Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GD ĐT Yên Bái
Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GD ĐT Yên Bái Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GD&ĐT Yên Bái; kỳ thi được diễn ra trong hai ngày 29 và 30 tháng 09 năm 2021. Trích dẫn đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GD&ĐT Yên Bái : + Cho tam giác ABC (ABC < ACB) vuông tại A và nội tiếp đường tròn (w). Tiếp tuyến tại A của (w) cắt đường thẳng BC tại D, E là điểm đối xứng của A qua đường thẳng BC, X là hình chiếu vuông góc của A lên BE, Y là trung điểm của AX, đường thẳng BY cắt đường tròn (w) tại điểm thứ hai là Z. Chứng minh BD là tiếp tuyến của đường tròn ngoại tiếp tam giác ADZ. + Một lớp học có 17 học sinh nam và 20 học sinh nữ. Hỏi có tất cả bao nhiêu cách xếp 37 học sinh đó thành một hàng dọc sao cho xuất hiện đúng một cặp nam – nữ mà học sinh nam đứng trước học sinh nữ? + Một dãy phòng có 19 phòng. Ban đầu mỗi phòng có một người. Sau đó cứ mỗi ngày có hai người nào đó được chuyển sang hai phòng bên cạnh nhưng theo hai chiều ngược nhau. Hỏi sau một số ngày có hay không trường hợp mà a) Không có ai ở phòng thứ tự chẵn. b) Có 10 người ở phòng cuối.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GD ĐT Sơn La
Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GD ĐT Sơn La Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GD&ĐT Sơn La; kỳ thi được diễn ra trong hai ngày 18 và 19 tháng 09 năm 2021. Trích dẫn đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GD&ĐT Sơn La : + Cho tam giác nhọn ABC không cân nội tiếp đường tròn (O), có đường cao AH và tâm đường tròn nội tiếp là I. Đường thẳng AI cắt đường tròn (O) tại điểm thứ hai M. Gọi M là điểm đối xứng với A qua tâm O. Đường thẳng MA’ cắt các đường thẳng AH, BC theo thứ tự tại N và K. a) Chứng minh tứ giác NHIK nội tiếp đường tròn. b) Đường thẳng A’I cắt lại đường tròn (O) tại điểm thứ hai D, hai đường thẳng AD và BC cắt nhau tại điểm S. Chứng minh rằng nếu AB + AC = 2BC thì I là trọng tâm của tam giác AKS. + Chứng minh rằng nếu số tự nhiên m có dạng 4k + 1 với k > 0 mà biểu diễn được không ít hơn hai cách dưới dạng tổng hai số chính phương thì m là hợp số. + Với số nguyên dương N cho trước, trên bảng có viết tất cả các ước nguyên dương của N. Hai bạn An và Bình chơi một trò chơi với luật như sau: An đi đầu tiên và xóa số N, ở mỗi lượt tiếp theo, các bạn sẽ xóa số là ước hoặc bội của số mà người kia xóa ở lượt trước đó. Ai đến lượt đi của mình mà không thực hiện được nữa thì thua. a) Với N = 2022, chứng minh rằng Bình có cách chơi để thắng. b) Tìm số N nhỏ nhất và N > 2022 sao cho An có cách chơi thắng.
Đề chọn học sinh giỏi lớp 12 môn Toán chuyên năm 2021 2022 sở GD ĐT Vĩnh Phúc
Nội dung Đề chọn học sinh giỏi lớp 12 môn Toán chuyên năm 2021 2022 sở GD ĐT Vĩnh Phúc Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán lớp 12 chương trình THPT chuyên năm học 2021 – 2022 sở GD&ĐT Vĩnh Phúc.
Đề chọn đội tuyển tỉnh môn Toán năm 2021 2022 trường chuyên Lê Quý Đôn Khánh Hòa
Nội dung Đề chọn đội tuyển tỉnh môn Toán năm 2021 2022 trường chuyên Lê Quý Đôn Khánh Hòa Bản PDF Đề chọn đội tuyển tỉnh môn Toán năm 2021 – 2022 trường chuyên Lê Quý Đôn – Khánh Hòa gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 180 phút; kỳ thi được diễn ra vào ngày 05 tháng 10 năm 2021.