Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán phương trình mũ và phương trình logarit thường gặp trong kỳ thi THPTQG

Bài toán trắc nghiệm phương trình mũ và phương trình logarit là bài toán được bắt gặp nhiều trong các đề thi THPT Quốc gia môn Toán, với nhiều dạng bài và độ khó từ mức cơ bản đến nâng cao. Để giúp các em học sinh khối 12 có thêm tài liệu tự học chủ đề phương trình mũ và phương trình logarit (Giải tích 12 chương 2), xa hơn là ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán, thầy Nguyễn Bảo Vương đã tổng hợp các câu hỏi và bài tập trắc nghiệm phương trình mũ và phương trình logarit từ các đề thi thử THPT Quốc gia môn Toán, đề tham khảo – đề minh họa – đề thi chính thức THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo. Tài liệu gồm 99 trang bao gồm 180 câu hỏi và bài tập trắc nghiệm phương trình mũ và phương trình logarit có đáp án và lời giải chi tiết. Mục lục tài liệu các dạng toán phương trình mũ và phương trình logarit thường gặp trong kỳ thi THPTQG: PHẦN A . CÂU HỎI Dạng 1 . Phương trình logarit (Trang 2). + Dạng 1.1 Phương trình logarit cơ bản (Trang 2). + Dạng 1.2 Biến đổi đưa về phương trình logarit cơ bản (Trang 4). + Dạng 1.3 Giải và biện luận phương trình logarit bằng phương pháp đưa về cùng cơ số (Trang 6). + Dạng 1.3.1 Phương trình logarit không chứa tham số (Trang 6). + Dạng 1.3.2 Phương trình logarit chứa tham số (Trang 7). + Dạng 1.4 Giải và biện luận phương trình logarit bằng phương pháp đặt ẩn phụ (Trang 7). + Dạng 1.4.1 Phương trình logarit không chứa tham số (Trang 7). + Dạng 1.4.2 Phương trình logarit chứa tham số và dùng định lý Vi-et để biện luận (Trang 8). + Dạng 1.4.3 Phương trình logarit chứa tham số và dùng phương pháp cô lập m để biện luận (Trang 9). + Dạng 1.5 Giải và biện luận phương trình logarit chứa tham số bằng phương pháp cô lập tham số (Trang 10). + Dạng 1.6 Giải và biện luận phương trình logarit bằng phương pháp hàm số (Trang 10). + Dạng 1.7 Giải và biện luận phương trình logarit bằng phương pháp khác (Trang 10). Dạng 2 . Phương trình mũ (Trang 11). + Dạng 2.1 Phương trình mũ cơ bản (Trang 11). + Dạng 2.2 Giải và biện luận phương trình mũ bằng phương pháp đặt ẩn phụ (Trang 13). + Dạng 2.2.1 Phương trình mũ không chứa tham số (Trang 13). + Dạng 2.2.2 Phương trình mũ chứa tham số và dùng định lý Vi-et để biện luận (Trang 15). + Dạng 2.2.3 Phương trình mũ chứa tham số và dùng phương pháp cô lập m để biện luận (Trang 17). + Dạng 2.3 Giải và biện luận phương trình mũ bằng phương pháp logarit hóa (Trang 18). + Dạng 2.4 Giải và biện luận phương trình mũ bằng một số phương pháp khác (Trang 19). + Dạng 2.5 Phương pháp hàm số (Trang 19). Dạng 3 . Phương trình kết hợp của mũ và logarit (Trang 19). + Dạng 3.1 Giải và biện luận bằng phương pháp đặt ẩn phụ (Trang 19). + Dạng 3.2 Giải và biện luận bằng phương pháp cô lập m (Trang 20). + Dạng 3.3 Giải và biện luận bằng phương pháp hàm số (Trang 21). [ads] PHẦN B . LỜI GIẢI THAM KHẢO Dạng 1 . Phương trình logarit (Trang 21). + Dạng 1.1 Phương trình logarit cơ bản (Trang 21). + Dạng 1.2 Biến đổi đưa về phương trình logarit cơ bản (Trang 27). + Dạng 1.3 Giải và biện luận phương trình logarit bằng phương pháp đưa về cùng cơ số  (Trang 32). + Dạng 1.3.1 Phương trình logarit không chứa tham số (Trang 32). + Dạng 1.3.2 Phương trình logarit chứa tham số (Trang 35). + Dạng 1.4 Giải và biện luận phương trình logarit bằng phương pháp đặt ẩn phụ (Trang 41). + Dạng 1.4.1 Phương trình logarit không chứa tham số  (Trang 41). + Dạng 1.4.2 Phương trình logarit chứa tham số và dùng định lý Vi-et để biện luận (Trang 43). + Dạng 1.4.3 Phương trình logarit chứa tham số và dùng phương pháp cô lập m để biện luận (Trang 46). + Dạng 1.5 Giải và biện luận phương trình logarit chứa tham số bằng phương pháp cô lập tham số (Trang 50). + Dạng 1.6 Giải và biện luận phương trình logarit bằng phương pháp hàm số (Trang 52). + Dạng 1.7 Giải và biện luận phương trình logarit bằng phương pháp khác (Trang 53). Dạng 2 . Phương trình mũ (Trang 57). + Dạng 2.1 Phương trình mũ cơ bản (Trang 57). + Dạng 2.2 Giải và biện luận phương trình mũ bằng phương pháp đặt ẩn phụ (Trang 62). + Dạng 2.2.1 Phương trình mũ không chứa tham số (Trang 62). + Dạng 2.2.2 Phương trình mũ chứa tham số và dùng định lý Vi-et để biện luận (Trang 69). + Dạng 2.2.3 Phương trình mũ chứa tham số và dùng phương pháp cô lập m để biện luận (Trang 79). + Dạng 2.3 Giải và biện luận phương trình mũ bằng phương pháp logarit hóa (Trang 84). + Dạng 2.4 Giải và biện luận phương trình mũ bằng một số phương pháp khác (Trang 85). + Dạng 2.5 Phương pháp hàm số (Trang 87). Dạng 3 . Phương trình kết hợp của mũ và logarit (Trang 88). + Dạng 3.1 Giải và biện luận bằng phương pháp đặt ẩn phụ (Trang 88). + Dạng 3.2 Giải và biện luận bằng phương pháp cô lập m (Trang 91). + Dạng 3.3 Giải và biện luận bằng phương pháp hàm số (Trang 95).

Nguồn: toanmath.com

Đọc Sách

Bài giảng lũy thừa và hàm số lũy thừa
Tài liệu gồm 20 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề lũy thừa và hàm số lũy thừa, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 2: Hàm số lũy thừa, hàm số mũ và hàm số lôgarit. Mục tiêu : Kiến thức : + Biết các khái niệm và tính chất của lũy thừa với số mũ nguyên, lũy thừa với số mũ hửu tỉ không nguyên và lũy thừa với số mũ thực. + Biết khái niệm và tính chất của căn bậc n. + Biết khái niệm và tính chất của hàm số lũy thừa. + Biết công thức tính đạo hàm của hàm số lũy thừa. + Biết dạng đồ thị của hàm số lũy thừa. Kĩ năng : + Biết dùng các tính chất của lũy thừa để rút gọn biểu thức, so sánh những biểu thức có chứa lũy thừa. + Biết khảo sát hàm số lũy thừa. + Tính được đạo hàm của hàm số lũy thừa. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Lũy thừa. – Bài toán 1. Viết lũy thừa với dạng số mũ hữu tỷ. + Bài toán 1.1. Thu gọn biểu thức chứa căn thức. + Bài toán 1.2. Thu gọn biểu thức chứa lũy thừa. – Bài toán 2. Tính giá trị biểu thức. Dạng 2 : Hàm số lũy thừa. – Bài toán 1. Tìm tập xác định của hàm số lũy thừa. – Bài toán 2. Tính đạo hàm của hàm số lũy thừa. – Bài toán 3. Khảo sát sự biến thiên và nhận dạng đồ thị của hàm số lũy thừa.
Nắm trọn chuyên đề mũ - logarit và tích phân
Cuốn sách gồm 455 trang, được biên soạn bởi nhóm tác giả Tư Duy Toán Học 4.0: Phan Nhật Linh, Nguyễn Duy Hiếu, Nguyễn Khánh Linh, Lê Huy Long, tóm tắt toàn bộ lý thuyết và phương pháp giải các dạng toán, các ví dụ minh họa và bài tập rèn luyện từ cơ bản đến nâng cao chuyên đề mũ – logarit và tích phân, giúp các em hoàn thiện kiến thức, rèn tư duy và rèn luyện tốc độ làm bài; tất cả các bài tập trong sách đều có giải chi tiết 100% tiện lợi cho việc so sánh đáp án và tra cứu thông tin. Mục lục cuốn sách nắm trọn chuyên đề mũ – logarit và tích phân: PHẦN I . MŨ VÀ LOGARIT. CHỦ ĐỀ 1. MỞ ĐẦU VỀ LŨY THỪA. Dạng 1. Tính, rút gọn, so sánh các số liên quan đến lũy thừa. CHỦ ĐỀ 2. MŨ – LOGARIT. Dạng 1. Biến đổi mũ – logarit. CHỦ ĐỀ 3. HÀM SỐ LŨY THỪA, MŨ VÀ LOGARIT. Dạng 1. Bài tập về hàm số lũy thừa, hàm số mũ và hàm số logarit. CHỦ ĐỀ 4. PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LOGARIT. Dạng 1. Bài tập về phương trình mũ, phương trình logarit số 01. Dạng 2. Bài tập về phương trình mũ, phương trình logarit số 02. Dạng 3. Bài tập về phương trình mũ, phương trình logarit chứa tham số 01. Dạng 4. Bài tập về phương trình mũ, phương trình logarit chứa tham số 02. CHỦ ĐỀ 5. BPT MŨ – BPT LOGARIT. Dạng 1. Biện luận nghiệm của phương trình mũ – logarit. Dạng toán tìm GTLN và GTNN của hàm số mũ – logarit. Dạng toán liên quan đến hàm đặc trưng. Dạng toán tìm cặp số nguyên thỏa mãn điều kiện. Dạng toán lãi suất. Dạng toán thực tế liên quan đến sự tang trưởng. Dạng toán thường xuất hiện trong đề thi của Bộ GD&ĐT. PHẦN II . NGUYÊN HÀM – TÍCH PHÂN. CHỦ ĐỀ 1. NGUYÊN HÀM. Dạng 1. Phương pháp tính nguyên hàm. CHỦ ĐỀ 2. TÍCH PHÂN. Dạng 1. Phương pháp tính tích phân. Dạng 2. Tích phân cho bởi nhiều hàm. Dạng 3. Tích phân hàm ẩn phần 1. Dạng 3. Tích phân hàm ẩn phần 2. Dạng 4. Ứng dụng tích phân tính diện tích, thể tích. Dạng 5. Tích phân trong đề thi của Bộ GD&ĐT.
Tổng ôn tập TN THPT 2021 môn Toán Hàm số lũy thừa - mũ - logarit
Tài liệu gồm 168 trang, được tổng hợp bởi thầy giáo Nguyễn Bảo Vương, tuyển tập câu hỏi và bài tập trắc nghiệm chuyên đề hàm số lũy thừa, hàm số mũ và hàm số logarit, có đáp án và lời giải chi tiết. Các câu hỏi và bài tập được trích từ các đề thi thử tốt nghiệp THPT năm 2021 môn Toán của các trường THPT và sở GD&ĐT trên cả nước, với mục đích giúp các em học sinh rèn luyện, rà soát kiến thức chủ đề Giải tích 12 chương 2, trước khi bước vào kỳ thi tốt nghiệp THPT 2021 môn Toán và các kỳ thi tuyển sinh Đại học – Cao đẳng. Mục lục tài liệu tổng ôn tập TN THPT 2021 môn Toán: Hàm số lũy thừa – mũ – logarit: 1. Mức độ nhận biết: 133 câu. + Câu hỏi và bài tập (Trang 01). + Đáp án và lời giải chi tiết (Trang 13). 2. Mức độ thông hiểu: 111 câu. + Câu hỏi và bài tập (Trang 38). + Đáp án và lời giải chi tiết (Trang 50). 3. Mức độ vận dụng thấp: 61 câu. + Câu hỏi và bài tập (Trang 80). + Đáp án và lời giải chi tiết (Trang 87). 4. Mức độ vận dụng cao: 74 câu. + Câu hỏi và bài tập (Trang 112). + Đáp án và lời giải chi tiết (Trang 121). Xem thêm : Tổng ôn tập TN THPT 2021 môn Toán: Ứng dụng đạo hàm và khảo sát hàm số
Chuyên đề hàm số lũy thừa, hàm số mũ và hàm số logarit - Lê Hồ Quang Minh
Tài liệu gồm 173 trang, được biên soạn bởi thầy giáo Lê Hồ Quang Minh, hướng dẫn học sinh khối 12 tự học chuyên đề hàm số lũy thừa, hàm số mũ và hàm số logarit, thuộc chương trình Giải tích 12 chương 2 và ôn thi tốt nghiệp THPT môn Toán. Chủ đề 1 . LUỸ THỪA VÀ HÀM SỐ LUỸ THỪA. Vấn đề 1. LUỸ THỪA. VÍ DỤ MINH HOẠ. Vấn đề 2. HÀM SỐ LUỸ THỪA. VÍ DỤ MINH HOẠ. Dạng 1. Tìm tập xác định của hàm số luỹ thừa. Dạng 2. Đạo hàm và đồ thị của hàm số luỹ thừa. BÀI TẬP RÈN LUYỆN. Bài tập rèn luyện vấn đề 1. Bài tập rèn luyện vấn đề 2. Chủ đề 2 . LOGARIT. VÍ DỤ MINH HOẠ. Dạng 1. Tìm điều kiện xác định của biểu thức logarit. Dạng 2. Rút gọn và tính giá trị biểu thức logarit. Dạng 3. Biểu diễn logarit theo các logarit đã biết. BÀI TẬP RÈN LUYỆN. Dạng 1. Tìm điều kiện xác định của biểu thức logarit. Dạng 2. Rút gọn và tính giá trị biểu thức logarit. Dạng 3. Biểu diễn logarit theo các logarit đã biết. Chủ đề 3 . HÀM SỐ MŨ – HÀM SỐ LOGARIT. VÍ DỤ MINH HOẠ. Dạng 1. Tìm tập xác định của hàm số logarit. Dạng 2. Đạo hàm và đồ thị của hàm số mũ – logarit. Dạng 3. Các bài toán thực tế về hàm số mũ. Dạng 4. Cực trị hàm số mũ – logarit và min max hàm nhiều biến. BÀI TẬP RÈN LUYỆN. Dạng 1. Tìm tập xác định của hàm số logarit. Dạng 2. Đạo hàm và đồ thị của hàm số mũ – logarit. Dạng 3. Các bài toán thực tế về hàm số mũ. Dạng 4. Cực trị hàm số mũ – logarit và min max hàm nhiều biến. Cực trị của hàm số mũ và hàm số logarit. Giá trị lớn nhất và nhỏ nhất của hàm số mũ và logarit. Chủ đề 4 . PHƯƠNG TRÌNH MŨ – LOGARIT. VÍ DỤ MINH HOẠ. Dạng 1. Phương trình mũ không chứa tham số. Dạng 2. Phương trình logarit không chứa tham số. Dạng 3. Phương trình mũ – logarit chứa tham số. BÀI TẬP RÈN LUYỆN. Dạng 1. Phương trình mũ không chứa tham số. Dạng 2. Phương trình logarit không chứa tham số. Dạng 3. Phương trình mũ – logarit chứa tham số. Chủ đề 5 . BẤT PHƯƠNG TRÌNH MŨ – LOGARIT. VÍ DỤ MINH HOẠ. Dạng 1. Bất phương trình mũ không chứa tham số. Dạng 2. Bất phương trình logarit không chứa tham số. Dạng 3. Bất phương trình mũ – logarit chứa tham số. BÀI TẬP RÈN LUYỆN. Dạng 1. Bất phương trình mũ không chứa tham số. Dạng 2. Bất phương trình logarit không chứa tham số. Dạng 3. Bất phương trình mũ – logarit chứa tham số.