Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chinh phục VDC Giải tích luyện thi THPT năm 2023 - Phan Nhật Linh

Tài liệu gồm 498 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, hướng dẫn chinh phục VDC Giải tích luyện thi THPT năm 2023. LỜI NÓI ĐẦU : Các em học sinh, quý thầy cô và bạn đọc thân mến! Cuốn sách “Chinh phục Vận dụng – Vận dụng cao Giải tích 2023” này được nhóm tác giả biên soạn với mục đích giúp các em học sinh khá giỏi trên toàn quốc chinh phục được các câu khó trong đề thi của Bộ giáo dục trong các năm gần đây. Trong mỗi cuốn sách, chúng tôi trình bày một cách rõ ràng và khoa học, tạo sự thuận lợi nhất cho các em học tập và tham khảo. Tất cả các bài tập trong sách chúng tôi đều tóm tắt lý thuyết và tiến hành giải chi tiết 100% để các em tiện lợi cho việc ôn tập, so sánh đáp án và tra cứu thông tin. Để có thể biên soạn đầy đủ và hoàn thiện bộ sách này, nhóm tác giả có sưu tầm, tham khảo một số bài toán trích từ đề thi của các Sở, trường Chuyên trên các nước và một số thầy cô trên toàn quốc. Chân thành cảm ơn quý thầy cô đã sáng tạo ra các bài toán hay và các phương pháp giải toán hiệu quả nhất. Mặc dù nhóm tác giả đã tiến hành biên soạn và phản biện kĩ lưỡng nhất nhưng vẫn không tránh khỏi sai sót. Chúng tôi rất mong nhận được những ý kiến phản hồi và đóng góp từ quý thầy cô, các em học sinh và bạn đọc để cuốn sách trở nên hoàn thiện hơn. Cuối cùng, nhóm tác giả xin gửi lời chúc sức khỏe đến quý thầy cô, các em học sinh và quý bạn đọc. Chúc quý vị có thể khai thác hiệu quả nhất các kiến thức khi cầm trên tay cuốn sách này! Trân trọng. MỤC LỤC : CHƯƠNG 1: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐTHS. Chủ đề 01. Tính đơn điệu của hàm số 1. Chủ đề 02. Cực trị của hàm số 52. Chủ đề 03. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số 109. Chủ đề 04. Đường tiệm cận của đồ thị hàm số 159. Chủ đề 05. Sự tương giao của đồ thị hàm số 193. Chủ đề 06. Tiếp tuyến của đồ thị hàm số 244. CHƯƠNG 2: HÀM SỐ LŨY THỪA – MŨ VÀ HÀM SỐ LOGARIT. Chủ đề 07. Phương trình – BPT mũ logarit chứa tham số 289. Chủ đề 08. Kỹ năng sử dụng hàm đặc trưng 332. CHƯƠNG 3: NGUYÊN HÀM – TÍCH PHÂN VÀ ỨNG DỤNG. Chủ đề 09. Nguyên hàm – tích phân và ứng dụng 372. CHƯƠNG 4: SỐ PHỨC. Chủ đề 10. Các bài toán nâng cao số phức. 407. CHƯƠNG 5: TỔ HỢP XÁC SUẤT. Chủ đề 11. Các bài toán xác suất nâng cao 465.

Nguồn: toanmath.com

Đọc Sách

Bí kíp Thế Lực 2016
Tài liệu Bí kíp Thế Lực 2016 bản đầy đủ được scan từ cuốn sách cùng tên của tác giả Nguyễn Thế Lực, sách dày 216 trang bao gồm các kinh nghiệm giải toán của tác giả đối với 3 câu phân loại trong đề thi THPT Quốc gia: Phương trình – Oxy và Bất đẳng thức. Nội dung tài liệu : I. Bí kíp phương trình – bất phương trình 1. Giới thiệu, yêu cầu và các phương pháp cơ bản cần nắm vững 2. Basic Skill + Phương trình cho nghiệm đẹp + Phương trình cho nghiệm xấu + Đánh giá sau liên hợp, truy ngược dấu + Một số bài khó bấm máy – thường liên quan đến ẩn phụ 3. Advance Skill + Super Skill: Ép liên hợp + Pro Skill: Ép hàm số 4. Một số bài tập tự luyện có hướng dẫn II. Bí kíp hệ phương trình 1. Khái quát hướng giải hệ phương trình cơ bản và kiến thức cần nắm 2. Cách tìm mối quan hệ giữa x và y bằng máy tính từ 1 phương trình 3. Dạng hệ phải kết hợp 2 phương trình 4. Một số kỹ năng bổ trợ giải hệ phương trình 5. Các bài tập rèn luyện [ads] III. Bí kíp Oxy 1. Các kiến thức cần nhớ 2. Tư duy giải Oxy 3. Các bổ đề phụ cần biết, cách chứng minh và áp dụng 4. Chuẩn hóa Oxy 5. Các bước làm một bài toán Oxy 6. Hệ thống bài tập rèn luyện có lời giải IV. Bí kíp bất đẳng thức 1. Kiến thức cần nhớ và hướng làm chung 2. Bấm máy cày dấu bằng “=” 3. Một số bất đẳng thức đánh giá tại biên 4. Kinh nghiệm giải bất đẳng thức 5. Hệ thống bài tập rèn luyện
Các chuyên đề luyện thi THPT Quốc gia môn Toán - Nguyễn Văn Lực
Tài liệu Các chuyên đề luyện thi THPT Quốc gia môn Toán của tác giả Nguyễn Văn Lực gồm 372 trang. Tài liệu là hệ thống các bài tập được chọn lọc và giải chi tiết, phân loại theo từng chuyên đề.
Kĩ năng sử dụng máy tính Casio trong giải toán - Bùi Thế Việt
Trong các dụng cụ học tập được phép mang vào phòng thi trong các kỳ thi đại học, kỳ thi THPT Quốc Gia thì máy tính cầm tay là dụng cụ không thể thiếu giúp chúng ta tính toán nhanh chóng. Tuy nhiên, máy tính cầm tay sẽ là trợ thủ đắc lực để giải toán, đặc biệt là giải Phương Trình, Hệ Phương Trình, Bất Phương Trình … hay kể cả là Bất Đẳng Thức. Mình (tác giả Bùi Thế Việt) là một người rất đam mê với những kỹ năng, thủ thuật sử dụng máy tính cầm tay trong giải toán. Mình đã áp dụng nó vào đề thi THPT Quốc Gia 2015. Chỉ trong 3 – 5 phút, mình đã đưa ra lời giải chính xác cho câu Phương Trình Vô Tỷ và cũng chỉ gần 1 giờ, mình đã hoàn thành xong bài làm với điểm số tuyệt đối, là 1 trong 85/671.149 người được điểm tối đa. Vậy sử dụng sao cho hiệu quả? Hãy đến với chuyên đề Kỹ Năng Sử Dụng CASIO Trong Giải Toán. Chuyên đề này chưa phải là tất cả những Thủ Thuật mà mình đưa tới cho bạn đọc. Tuy không nhiều nhưng các thủ thuật dưới đây sẽ mang tới sự kỳ diệu mà chiếc máy tính CASIO có thể mang lại. [ads] Chuyên đề giới thiệu 8 kĩ năng sử dụng máy tính CASIO trong việc giải toán: 1. Thủ thuật sử dụng CASIO để rút gọn biểu thức. 2. Thủ thuật sử dụng CASIO để giải phương trình bậc 4. 3. Thủ thuật sử dụng CASIO để tìm nghiệm phương trình. 4. Thủ thuật sử dụng CASIO để phân tích đa thức thành nhân tử một ẩn. 5. Thủ thuật sử dụng CASIO để phân tích đa thức thành nhân tử hai ẩn. 6. Thủ thuật sử dụng CASIO để giải hệ phương trình. 7. Thủ thuật sử dụng CASIO để tích nguyên hàm, tích phân. 8. Thủ thuật sử dụng CASIO để giải bất đẳng thức.
Chuyên đề bài toán thực tế - Đoàn Văn Bộ
Tài liệu gồm 16 trang hướng dẫn phương pháp giải các bài toán thực tế thường gặp do tác giả Đoàn Văn Bộ biên soạn. Ý tưởng giải bài toán này là dựa vào phần kiến thức BẤT PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN và HỆ BẤT PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN mà rất nhiều giáo viên ở Trung học phổ thông đã bỏ qua, không dạy các em học sinh. Việc giải một số bài toán kinh tế thường dẫn đến việc xét những hệ bất phương trình bậc nhất hai ẩn và giải chúng. Loại bài toán này được nghiên cứu trong một ngành toán học với tên gọi là Quy hoạch tuyến tính. Tuy nhiên, đối với cấp bậc trung học phổ thông, ta chỉ xem xét và giải những bài toán đơn giản. Ngoài ra, tôi còn đề cập đến một số bài toán thực tế ở một số lý thuyết phần khác như: Đạo hàm, Khảo sát hàm số … Hy vọng qua chuyên đề này, khi các bạn gặp bài toán này trong đề thi THPT Quốc gia các bạn có thể làm được. [ads]