Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi KSCL Toán 10 lần 2 năm học 2017 - 2018 trường THPT Yên Lạc - Vĩnh Phúc

Đề thi KSCL Toán 10 lần 2 năm học 2017 – 2018 trường THPT Yên Lạc – Vĩnh Phúc mã đề 101 gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, không kể thời gian giao đề, đề được biên soạn theo “mô-tip” của đề thi THPT Quốc gia, đề thi KSCL Toán 10 có đáp án . Trích dẫn đề thi KSCL Toán 10 : + Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập chung chiến lược vào kinh doanh xe hon đa Future Fi với chi phí mua vào một chiếc là 27( triệu đồng) và bán ra với giá là 31 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm là sẽ tăng thêm 200 chiếc. Vậy doanh nghiệp phải định giá bán mới là bao nhiêu để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất. + Cổng Arch tại thành phố St Louis của Mỹ có hình dạng là một parabol (hình vẽ). Biết khoảng cách giữa hai chân cổng bằng 162 m. Trên thành cổng, tại vị trí có độ cao 43m so với mặt đất (điểm M), người ta thả một sợi dây chạm đất (dây căng thẳng theo phương vuông góc với đất). Vị trí chạm đất của đầu sợi dây này cách chân cổng A một đoạn 10 m. Giả sử các số liệu trên là chính xác. Hãy tính độ cao của cổng Arch (tính từ mặt đất đến điểm cao nhất của cổng). [ads] + Muốn đo chiều cao của tháp chàm Por Klong Garai ở Ninh Thuận người ta lấy hai điểm A và B trên mặt đất có khoảng cách AB = 12m cùng thẳng hàng với chân C của tháp để đặt hai giác kế. Chân của giác kế có chiều cao h = 1,3m. Gọi D là đỉnh tháp và hai điểm A1, B1 cùng thẳng hàng với C1 thuộc chiều cao CD của tháp. Người ta đo được góc DA1C1 = 49 độ và góc DB1C1 = 35 độ. Tính chiều cao CD của tháp.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra chất lượng lớp 10 môn Toán lần 2 năm 2019 2020 trường THPT Lý Thái Tổ Bắc Ninh
Nội dung Đề kiểm tra chất lượng lớp 10 môn Toán lần 2 năm 2019 2020 trường THPT Lý Thái Tổ Bắc Ninh Bản PDF Thứ Bảy ngày 30 tháng 06 năm 2020, trường THPT Lý Thái Tổ, thị xã Từ Sơn, tỉnh Bắc Ninh tổ chức kỳ thi kiểm tra chất lượng môn Toán đối với học sinh lớp 10 lần thứ hai năm học 2019 – 2020. Đề kiểm tra chất lượng Toán lớp 10 lần 2 năm 2019 – 2020 trường THPT Lý Thái Tổ – Bắc Ninh gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 120 phút, đề thi có lời giải chi tiết. Trích dẫn đề kiểm tra chất lượng Toán lớp 10 lần 2 năm 2019 – 2020 trường THPT Lý Thái Tổ – Bắc Ninh : + Trong mặt phẳng với hệ trục tọa độ Oxy, cho hình chữ nhật ABCD có điểm M nằm trên cạnh CD sao cho DC = 3DM và điểm N đối xứng với điểm C qua điểm B. Biết đỉnh B(-2;2), điểm A nằm trên đường thẳng delta: x + y – 3 = 0 và đường thẳng MN có phương trình là 3x – 4y + 4 = 0. Xác định tọa độ các đỉnh còn lại của hình chữ nhật ABCD. [ads] + Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng d1: x – y – 1 = 0 và d2: 7x – y – 13 = 0. a. Tính cosin của góc tạo bởi hai đường thẳng d1 và d2. b. Viết phương trình tham số của đường thẳng delta đi qua gốc tọa độ O và song song với d2. c. Viết phương trình đường tròn (C) có tâm I nằm trên đường thẳng d1, tiếp xúc với d2 và có bán kính R = 3√2. + Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Hỏi có tất cả bao nhiêu giá trị nguyên dương của tham số m để bất phương trình f(-x^2 + 4x) > m có nghiệm thuộc khoảng [0;3]? File WORD (dành cho quý thầy, cô):
Đề chọn lớp chất lượng cao Toán 10 năm 2020 2021 trường Yên Phong 2 Bắc Ninh
Nội dung Đề chọn lớp chất lượng cao Toán 10 năm 2020 2021 trường Yên Phong 2 Bắc Ninh Bản PDF Nhằm tuyển chọn những em học sinh lớp 10 giỏi môn Toán vào học tại các lớp chất lượng cao trong năm học tới, vừa qua, trường Yên Phong số 2, tỉnh Bắc Ninh tổ chức kỳ thi chọn lớp chất lượng cao Toán lớp 10 năm học 2020 – 2021. Đề chọn lớp chất lượng cao Toán lớp 10 năm 2020 – 2021 trường Yên Phong 2 – Bắc Ninh gồm có 02 trang với 15 câu trắc nghiệm và 06 câu tự luận, phần trắc nghiệm chiếm 03 điểm, phần tự luận chiếm 07 điểm, thời gian làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề chọn lớp chất lượng cao Toán lớp 10 năm 2020 – 2021 trường Yên Phong 2 – Bắc Ninh : + Trên mặt phẳng Oxy, cho A(2;2), B(5;1) và đường thẳng ∆: x – 2y + 8 = 0. a) Viết PTTQ của d đi qua A và vuông góc với ∆. Tìm H là hình chiếu của A lên ∆. b) Tìm điểm C ∈ ∆, C có hoành độ dương sao cho diện tích tam giác ABC bằng 17. [ads] + Trên mặt phẳng Oxy, cho tam giác ABC có A(2; 1), đường cao BH: x – 3y – 7 = 0, đường trung tuyến CM: x + y + 1 = 0. Tìm B, C. + Tìm tọa độ giao điểm của đồ thị hàm số y = x^2 – 2021x + 2020 với trục hoành. File WORD (dành cho quý thầy, cô):
Đề KSCL lần 3 Toán 10 năm 2022 - 2023 trường THPT Nguyễn Viết Xuân - Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi khảo sát chất lượng lần 3 môn Toán 10 năm học 2022 – 2023 trường THPT Nguyễn Viết Xuân, tỉnh Vĩnh Phúc; đề thi mã đề 101, hình thức trắc nghiệm với 50 câu, thời gian làm bài: 90 phút, không kể thời gian phát đề. Trích dẫn đề KSCL lần 3 Toán 10 năm 2022 – 2023 trường THPT Nguyễn Viết Xuân – Vĩnh Phúc : + Trên nóc một tòa nhà có một cột ăng-ten cao 5 m. Từ vị trí quan sát 𝐴 cao 7 m so với mặt đất, có thể nhìn thấy đỉnh 𝐵 và chân 𝐶 của cột ăng-ten dưới góc 50 0 và 40 0 so với phương nằm ngang. Chiều cao của tòa nhà gần nhất với giá trị nào sau đây? + Một cửa hàng buôn giày nhập một đôi với giá là 60 USD. Cửa hàng ước tính rằng nếu đôi giày được bán với giá 𝑥 USD thì mỗi tháng khách hàng sẽ mua (140 − 𝑥) đôi. Hỏi cửa hàng bán một đôi giày giá bao nhiêu USD thì thu được nhiều lãi nhất? A. 60USD. B. 160USD. C. 240USD. D. 100 USD. + Khi quả bóng được đá lên, nó sẽ đạt độ cao nào đó rồi rơi xuống đất. Biết rằng quỹ đạo của quả là một cung parabol trong mặt phẳng với hệ tọa độ 𝑂𝑡ℎ, trong đó 𝑡 là thời gian (tính bằng giây), kể từ khi quả bóng được đá lên là độ cao (tính bằng mét) của quả bóng. Giả thiết rằng quả bóng được đá lên từ độ cao 1,2m. Sau đó 1 giây, nó đạt độ cao 8,5m và 2 giây sau khi đá lên, nó ở độ cao 6m. Hãy tìm hàm số bậc hai biểu thị độ cao ℎ theo thời gian 𝑡 và có phần đồ thị trùng với quỹ đạo của quả bóng trong tình huống trên.
Đề khảo sát lớp 10 môn Toán lần 3 năm 2019 2020 trường THPT Yên Lạc Vĩnh Phúc
Nội dung Đề khảo sát lớp 10 môn Toán lần 3 năm 2019 2020 trường THPT Yên Lạc Vĩnh Phúc Bản PDF Ngày … tháng 06 năm 2020, trường THPT Yên Lạc, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 10 năm học 2019 – 2020 lần thi thứ ba. Đề khảo sát Toán lớp 10 lần 3 năm 2019 – 2020 trường THPT Yên Lạc – Vĩnh Phúc gồm 50 câu trắc nghiệm khách quan, thời gian làm bài thi là 90 phút, đề thi có đáp án mã đề 101 và mã đề 102. Trích dẫn đề khảo sát Toán lớp 10 lần 3 năm 2019 – 2020 trường THPT Yên Lạc – Vĩnh Phúc : + Cho đường tròn lượng giác tâm O, gốc A. Gọi αlà số đo cung lượng giác AM và S là tập hợp các điểm M sao cho sin 3α = 0, β là số đo cung lượng giác AN và T là tập hợp các điểm N sao cos 3β = 1. Tìm số phần tử của tập hợp S\T? + Lúc 12 giờ, kim giờ và kim phút của một chiếc đồng hồ trùng nhau. Hỏi từ lúc đó đến khi hai kim vuông góc nhau lần đầu tiên, kim phút quay được một góc lượng giác bao nhiêu radian? [ads] + Cho tam giác ABC đều, cạnh a, trọng tâm G. I là trung điểm CG, J là trung điểm AB. Tập các điểm M sao cho |MA + MB + 4MC| = 6a là: A. đường tròn (G;2a). B. đường tròn (C;a). C. đường tròn (I;a). D. đường tròn (J;2a). File WORD (dành cho quý thầy, cô):