Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học kì 2 (HK2) lớp 10 môn Toán năm 2022 2023 trường THPT Nguyễn Trường Tộ TT Huế

Nội dung Đề học kì 2 (HK2) lớp 10 môn Toán năm 2022 2023 trường THPT Nguyễn Trường Tộ TT Huế Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kỳ 2 môn Toán lớp 10 năm học 2022 – 2023 trường THPT Nguyễn Trường Tộ, tỉnh Thừa Thiên Huế; đề thi hình thức 70% trắc nghiệm khách quan + 30% tự luận, thời gian 90 phút (không kể thời gian phát đề); đề thi có đáp án và hướng dẫn chấm điểm Mã đề [186], Mã đề [243], Mã đề [311], Mã đề [454]. Trích dẫn Đề học kỳ 2 Toán lớp 10 năm 2022 – 2023 trường THPT Nguyễn Trường Tộ – TT Huế : + Từ tập hợp các số tự nhiên có sáu chữ số đôi một khác nhau được lập từ tập M = {1; 2; 3; 4; 5; 6} chọn ngẫu nhiên một số. Tính xác suất để số được chọn có tổng ba chữ số đầu nhỏ hơn tổng ba chữ số cuối một đơn vị. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có ABC 20 03 31. a. Viết phương trình tổng quát của thẳng d đi qua B và song song với AC. b. Viết phương trình đường tròn ngoại tiếp tam giác ABC. + Cho hai đường thẳng: 2 10 x y và x y 2 20. Khi nói về vị trí tương đối của chúng, khẳng định nào đúng? A. Cắt nhau nhưng không vuông góc. B. Vuông góc. C. Song song. D. Trùng nhau. Lớp 10B có 25 đoàn viên trong đó 10 nam và 15 nữ. Chọn ngẫu nhiên 3 đoàn viên trong lớp để tham dự hội trại ngày 26 tháng 3. Tính xác suất để 3 đoàn viên được chọn có 2 nam và 1 nữ? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề cuối học kì 2 (HK2) lớp 10 môn Toán năm 2021 2022 trường THPT Lê Lợi Quảng Trị
Nội dung Đề cuối học kì 2 (HK2) lớp 10 môn Toán năm 2021 2022 trường THPT Lê Lợi Quảng Trị Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kì 2 môn Toán lớp 10 năm học 2021 – 2022 trường THPT Lê Lợi, tỉnh Quảng Trị; đề thi được biên soạn theo hình thức 70% trắc nghiệm + 30% tự luận, phần trắc nghiệm gồm 35 câu (chiếm 07 điểm), phần tự luận gồm 04 câu (chiếm 03 điểm), thời gian làm bài kiểm tra là 90 phút (không kể thời gian giao đề), đề thi có đáp án và lời giải chi tiết mã đề 192 293 391 490 589 688 787 886. Trích dẫn đề cuối học kì 2 Toán lớp 10 năm 2021 – 2022 trường THPT Lê Lợi – Quảng Trị : + Với hai điểm AB trên đường tròn định hướng, khẳng định nào sau đây đúng? A. Có vô số cung lượng giác có điểm đầu là A điểm cuối là B B. Chỉ có một cung lượng giác có điểm đầu là A điểm cuối là B C. Có đúng hai cung lượng giác có điểm đầu là A điểm cuối là B D. Có đúng bốn cung lượng giác có điểm đầu là A điểm cuối là B. + Cho bảng phân bố tần số của điểm thi môn Toán giữa kì của một lớp 10 như sau Điểm 2 3 5 6 8 9 Tần số 2 4 8 14 10 2 Mệnh đề đúng là: A. Tần suất của điểm 6 là 35%. B. Tần suất của điểm 8 là 30%. C. Tần suất của điểm 5 là 25%. D. Tần suất của điểm 2 là 10%. + Trong mặt phẳng tọa độ Oxy cho (C) là đường tròn đi qua điểm A(4;-2) và có tâm nằm trên đường thẳng d x y 3 0. Viết phương trình đường tròn (C) biết bán kính của đường tròn bằng 5.
Đề học kì 2 (HK2) lớp 10 môn Toán năm 2021 2022 trường THPT Nguyễn Thị Minh Khai TP HCM
Nội dung Đề học kì 2 (HK2) lớp 10 môn Toán năm 2021 2022 trường THPT Nguyễn Thị Minh Khai TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra chất lượng cuối học kỳ 2 môn Toán lớp 10 năm học 2021 – 2022 trường THPT Nguyễn Thị Minh Khai, quận 3, thành phố Hồ Chí Minh; đề thi được biên soạn theo hình thức tự luận, thời gian làm bài kiểm tra là 90 phút (không kể thời gian phát đề), đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học kỳ 2 Toán lớp 10 năm 2021 – 2022 trường THPT Nguyễn Thị Minh Khai – TP HCM : + Trong mặt phẳng Oxy, cho đường thẳng x + y – 6 = 0 và ba điểm A(2;0), B(-2;0), C(1;2). a) Viết phương trình tổng quát của đường thẳng qua C và song song. b) Tìm tọa độ điểm M nằm trên đường thẳng sao cho MA MB lớn nhất. + Trong mặt phẳng Oxy viết phương trình đường tròn đi qua hai điểm A(2;1), B(3;5) và có tâm nằm trên đường thẳng (D): x + y – 16 = 0. + Trong mặt phẳng Oxy, cho elip (E): 2 2 1 9 4 x y. Tính độ dài hai trục và tọa độ hai tiêu điểm của (E).
Đề cuối học kì 2 (HK2) lớp 10 môn Toán năm 2021 2022 trường THPT Phan Đăng Lưu TP HCM
Nội dung Đề cuối học kì 2 (HK2) lớp 10 môn Toán năm 2021 2022 trường THPT Phan Đăng Lưu TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra, đánh giá cuối học kỳ 2 môn Toán lớp 10 năm học 2021 – 2022 trường THPT Phan Đăng Lưu, quận Bình Thạnh, thành phố Hồ Chí Minh; đề thi được biên soạn theo hình thức tự luận, thời gian làm bài kiểm tra là 90 phút (không kể thời gian phát đề), đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề cuối kỳ 2 Toán lớp 10 năm 2021 – 2022 trường THPT Phan Đăng Lưu – TP HCM : + Trong mặt phẳng tọa độ Oxy, cho A(-4;5) và B(2;1). a) Viết phương trình tham số đường thẳng qua A nhận AB làm vectơ chỉ phương. b) Viết phương trình tổng quát đường trung trực của đoạn AB. + Trong mặt phẳng tọa độ Oxy. Cho đường thẳng
Đề ôn thi học kì 2 (HK2) lớp 10 môn Toán năm 2021 2022 trường THPT Võ Thành Trinh An Giang
Nội dung Đề ôn thi học kì 2 (HK2) lớp 10 môn Toán năm 2021 2022 trường THPT Võ Thành Trinh An Giang Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề ôn tập thi kiểm tra chất lượng cuối học kỳ 2 môn Toán lớp 10 năm học 2021 – 2022 trường THPT Võ Thành Trinh, tỉnh An Giang. Trích dẫn đề ôn thi học kỳ 2 Toán lớp 10 năm 2021 – 2022 trường THPT Võ Thành Trinh – An Giang : + Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng d : 2x − y + 3 = 0 và d′ : x + 2y + 3 = 0. Khẳng định nào sau đây là đúng? A. Hai đường thẳng d, d′ cắt nhau nhưng không vuông góc. B. Hai đường thẳng d, d′ song song với nhau. C. Đường thẳng d vuông góc với đường thẳng d′. D. Hai đường thẳng d, d′ trùng nhau. + Trong mặt phẳng tọa độ Oxy, cho hai điểm A(−4; 2), B(6; −3) và đường thẳng ∆ có phương trình 3x − 4y − 5 = 0. Gọi M là điểm thuộc đường thẳng ∆. Khi MA + MB đạt giá trị nhỏ nhất thì hoành độ của điểm M thuộc khoảng nào sau đây? + Trong mặt phẳng tọa độ Oxy, cho các điểm A(−1; 4), B(1; −2) và C(2; 0). 1 Viết phương trình tổng quát của đường thẳng AB. 2 Viết phương trình đường tròn tâm C và đi điểm A. 3 Tìm tọa độ giao điểm thức hai của đường thẳng AB với đường tròn (C).