Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát đợt 2 lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Đức Thọ Hà Tĩnh

Nội dung Đề khảo sát đợt 2 lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Đức Thọ Hà Tĩnh Bản PDF - Nội dung bài viết Đề khảo sát đợt 2 lớp 9 môn Toán năm 2022-2023 Đề khảo sát đợt 2 lớp 9 môn Toán năm 2022-2023 Chào quý thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu đến quý vị đề khảo sát chất lượng đợt 2 môn Toán lớp 9 năm học 2022-2023 của phòng Giáo dục và Đào tạo huyện Đức Thọ, tỉnh Hà Tĩnh. Đề thi bao gồm đáp án, hướng dẫn giải chi tiết và thang điểm cho mã đề 01 và mã đề 02. Trích dẫn một số câu hỏi từ đề khảo sát: Cho hàm số bậc nhất y = ax + b. Tìm a và b biết rằng đồ thị hàm số đi qua điểm M(1,1) và cắt trục hoành tại điểm có hoành độ là 3. Cho đường thẳng (d): y = xm + 3. Tìm m để (d) cắt đường thẳng y = 2x + 1 tại điểm có tung độ bằng 1. Tại cửa hàng điện máy, giá niêm yết một chiếc máy vi tính và một máy in có tổng số tiền là 21,5 triệu đồng. Trong đợt khuyến mãi đầu xuân 2023, mỗi máy vi tính giảm giá 40% và mỗi máy in giảm giá 30%. Bác Quang đã mua trong đợt giảm giá này một máy vi tính và một máy in với tổng số tiền là 13,5 triệu đồng. Hỏi mỗi máy vi tính, máy in nói trên khi chưa giảm giá là bao nhiêu? Cho nửa đường tròn (O) đường kính AB và dây AC (C khác A và B). Gọi N là điểm chính giữa cung AC; I là giao điểm của bán kính ON với dây AC. Chứng minh ∆ANC cân. Mời quý thầy, cô và các em học sinh tham gia khảo sát đợt 2 và cùng trải nghiệm những bài toán thú vị trong đề thi. Chúc quý vị thành công và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra kỳ 2 Toán 9 năm 2018 2019 trường chuyên Hà Nội Amsterdam
THCS. giới thiệu đến bạn đọc đề kiểm tra kỳ 2 Toán 9 năm 2018 – 2019 trường chuyên Hà Nội – Amsterdam, đề thi gồm 05 bài toán tự luận, thời gian làm bài 120 phút, kỳ thi được diễn ra vào ngày 18 tháng 03 năm 2019.
Đề kiểm tra khảo sát Toán 9 năm 2018 - 2019 phòng GDĐT Thanh Xuân - Hà Nội
Đề kiểm tra khảo sát Toán 9 năm 2018 – 2019 phòng GD&ĐT Thanh Xuân – Hà Nội gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 120 phút, kỳ thi được diễn ra vào thứ Sáu ngày 15 tháng 03 năm 2019. Trích dẫn đề kiểm tra khảo sát Toán 9 năm 2018 – 2019 phòng GD&ĐT Thanh Xuân – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một đội công nhân theo kế hoạch cần phải sản xuất 900 sản phẩm trong một số ngày quy định. Do mỗi ngày đội công nhân đó sản xuất vượt mức 3 sản phẩm nên đội công nhân đã hoàn thành vượt mức kế hoạch 90 sản phẩm và sớm hơn thời gian quy định 3 ngày. Hỏi theo kế hoạch, mỗi ngày đội công nhân phải sản xuất bao nhiêu sản phẩm? [ads] + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2(m – 1)x + 5 – 2m (m là tham số) và parabol (P): y = x^2. a) Chứng minh rằng với mọi giá trị của m đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt. b) Tìm giá trị của m để (d) cắt (P) tại hai điểm phân biệt có tổng tung độ bằng 30. + Cho đường tròn (O; R) và một điểm A nằm ngoài đường tròn sao cho OA = 2R. Từ A kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). M là điểm bất kỳ trên cung nhỏ BC, tiếp tuyển tại M của đường tròn cắt các đường thẳng AB, AC lần lượt tại E và F. a) Chứng minh tứ giác ABOC là tứ giác nội tiếp. b) Chứng minh tam giác ABC là tam giác đều. c) Chứng minh khi M di động trên cung nhỏ BC thì chu vi tam giác AEF không đổi. Tính chu vi tam giác AEF theo R. d) Tìm vị trí của M trên cung nhỏ BC để đoạn EF có độ dài nhỏ nhất.
Đề khảo sát Toán 9 lần 2 năm 2018 - 2019 trường THCS Đại Áng - Hà Nội
Chủ Nhật ngày 03 tháng 03 năm 2019, trường Trung học Cơ sở Đại Áng, Thanh Trì – Hà Nội đã tiến hành tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 lần 2 năm học 2018 – 2019, đề thi gồm 05 bài toán tự luận, học sinh làm bài thi Toán trong 120 phút, kỳ thi nhằm kiểm tra chất lượng môn Toán đối với học sinh lớp 9 giai đoạn giữa học kỳ 2 năm học 2018 – 2019, đồng thời giúp học sinh rèn luyện chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2019 – 2020. Trích dẫn đề khảo sát Toán 9 lần 2 năm 2018 – 2019 trường THCS Đại Áng – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một xe ô tô dự định đi từ tỉnh A đến tỉnh B với vận tốc 40 km/h. Lúc đầu ô tô đi với vận tốc đó, khi còn 60 km nữa thì được nửa quãng đường AB người lái xe quyết định tăng vận tốc thêm 10 km/h trên quãng đường còn lại. Do đó đến B sớm hơn 1 giờ so với dự định. Tính quãng đường AB? [ads] + Cho parabol (P): y=x^2 và đường thẳng (d): y = mx + 3 (m là tham số). a) Chứng minh rằng (d) luôn cắt (P) tại 2 điểm phân biệt. b) Biết A(2; 4) là một trong 2 giao điểm của (d) và (P). Tìm m? + Cho nửa đường tròn tâm (O), đường kính AB. Điểm H cố định thuộc đoạn thẳng AO (H khác A và O). Đường thẳng đi qua điểm H và vuông góc với AD cắt nửa đường tròn (O) tại C. Trên cung BC lấy D bất kì (D khác B và C). Tiếp tuyến tại D của nửa đường tròn cắt HC tại E. Gọi I là giao điểm của AD và HC. a) Chứng minh tứ giác HBDI nội tiếp đường tròn. b) Chứng minh tam giác DEI cân. c) Gọi F là tâm đường tròn ngoại tiếp tam giác ICD. Chứng minh góc ABF có số đo không đổi khi D thay đổi trên cung BC (D khác B và C).