Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi lớp 8 môn Toán năm 2014 2015 phòng GD ĐT Bình Giang Hải Dương

Nội dung Đề thi học sinh giỏi lớp 8 môn Toán năm 2014 2015 phòng GD ĐT Bình Giang Hải Dương Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 8 năm 2014 - 2015 phòng GD&ĐT Bình Giang Hải Dương Đề thi học sinh giỏi Toán lớp 8 năm 2014 - 2015 phòng GD&ĐT Bình Giang Hải Dương Xin chào quý thầy cô và các em học sinh lớp 8! Sytu xin giới thiệu đến quý vị đề thi học sinh giỏi môn Toán lớp 8 năm 2014 - 2015 từ phòng GD&ĐT Bình Giang - Hải Dương. Đề thi này bao gồm đáp án, lời giải và hướng dẫn chấm điểm, giúp các em ôn tập và kiểm tra kiến thức của mình. Trích dẫn một số câu hỏi từ đề thi: Câu 1: Cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD. Gọi E, F lần lượt là hình chiếu của B và D xuống đường thẳng AC. Gọi H và K lần lượt là hình chiếu của C xuống đường thẳng AB và AD. Hãy chứng minh tứ giác BEDF là hình bình hành. Câu 2: Chứng minh rằng: CH.CD = CB.CK. Câu 3: Chứng minh rằng: AB.AH + AD.AK = AC2. Câu 4: Một người đi xe máy từ A đến B dự định mất 3 giờ 20 phút. Nếu người ấy tăng vận tốc thêm 5 km/h thì sẽ đến B sớm hơn 20 phút. Hãy tính khoảng cách AB. Câu 5: Cho biểu thức A. 1) Tìm ĐKXĐ rồi rút gọn biểu thức A. 2) Tính giá trị của biểu thức A biết |x - 7| = 4. Đây là những câu hỏi thú vị và đa dạng trong đề thi. Hy vọng các em sẽ thấy hứng thú và tìm hiểu để có thể giải quyết chúng một cách thành công. Chúc quý thầy cô và các em học sinh đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG Toán 8 vòng 2 năm 2023 - 2024 phòng GDĐT Xuân Trường - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 THCS vòng 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Xuân Trường, tỉnh Nam Định. Trích dẫn Đề thi HSG Toán 8 vòng 2 năm 2023 – 2024 phòng GD&ĐT Xuân Trường – Nam Định : + Một trường THCS có tổ chức cho các em học sinh khối 8 và khối 9 đi trải nghiệm bằng ô tô. Nếu mỗi xe chỉ chở 22 học sinh thì còn thừa một học sinh. Nếu bớt đi một xe ô tô thì có thể phân phối đều số học sinh vào các xe còn lại. Hỏi lúc đầu có bao nhiêu xe ô tô và có tất cả bao nhiêu học sinh đi trải nghiệm? Biết rằng số học sinh trên mỗi xe không vượt quá 32 em. + Thầy giáo viết lên bảng các số tự nhiên liên tiếp từ 1 đến 2024. Hai bạn học sinh thực hiện trò chơi như sau: cứ một bạn thực hiện việc xóa đi hai số bất kỳ trên bảng thì bạn còn lại sẽ viết thay vào đó một số là giá trị tuyệt đối của hiệu hai số vừa xóa. Trò chơi chỉ kết thúc khi trên bảng còn đúng một số. Hỏi số cuối cùng trên bảng có thể là số 2023 được không? + Cho hình vẽ dưới đây là bản thiết kế thi công tầng 1 của một ngôi nhà hai tầng mái bằng. Biết ABC BAH AHG HGF GFE FED EDC DCB 90 AB BC m 6 18 DE m 6 GF m EF m GH DC m 4 7 4. Biết giá thiết kế mỗi mét vuông sàn là 120 nghìn đồng (mỗi sàn là một tầng). Hỏi bác chủ nhà phải trả bao nhiêu tiền để mua bản thiết kế của cả ngôi nhà đó?
Đề thi học sinh giỏi Toán 8 năm 2024 phòng GDĐT Yên Định - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 và chọn đội tuyển vòng 1 dự thi học sinh giỏi Toán 9 cấp tỉnh năm học 2024 – 2025 phòng Giáo dục và Đào tạo UBND huyện Yên Định, tỉnh Thanh Hóa; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi học sinh giỏi Toán 8 năm 2024 phòng GD&ĐT Yên Định – Thanh Hóa : + Tìm tất cả các số nguyên tố p có dạng 2 2 2 p a b c trong đó a, b, c là các số nguyên dương thỏa mãn 4 4 4 abc chia hết cho p. + Cho hình vuông ABCD có cạnh là a. Điểm E thuộc cạnh BC, F là giao điểm của AE và DC, G là giao điểm của DE và BF. Trên tia đối của tia DC lấy điểm M sao cho BE = DM. Gọi T là trung điểm của EM. 1. Chứng minh tam giác AEM vuông cân và ba điểm B, T, D thẳng hàng. 2. Gọi I, K theo thứ tự là giao điểm của AB với CG và DG. Chứng minh IE song song với BD. 3. Tìm vị trí điểm E trên cạnh BC để tổng BK + CF đạt GTNN. + Cho hai số thực dương x, y thoả mãn: x + y + xy = 3. Tìm giá trị nhỏ nhất của biểu thức P.
Đề thi Olympic Toán 8 năm 2022 - 2023 phòng GDĐT Thanh Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olympic môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Thanh Oai, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 12 tháng 04 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 8 năm 2022 – 2023 phòng GD&ĐT Thanh Oai – Hà Nội : + Một xí nghiệp dự định sản xuất 2000 sản phẩm trong 40 ngày. Nhưng nhờ tổ chức hợp lý nên thực tế xí nghiệp đã sản xuất mỗi ngày vượt mức 10 sản phẩm. Do đó xí nghiệp sản xuất không những vượt mức dự định 100 sản phẩm mà còn hoàn thành trước thời hạn. Xí nghiệp đã rút ngắn được số ngày hoàn thành công việc là? + Cho hình vuông ABCD trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE AF. Vẽ AH vuông góc với BF (H thuộc BF), AH cắt DC và BC lần lượt tại hai điểm M, N 1) Chứng minh DM = AF và tứ giác AEMD là hình chữ nhật 2) Biết diện tích tam giác BCH gấp bốn lần diện tích tam giác AEH. Chứng minh rằng CBH AEH và AC EF 2 3) Chứng minh rằng : 2 1 1 AD AM AN. + Tính độ dài của một chiếc hộp hình lập phương, biết rằng độ dài mỗi cạnh của hộp tăng thêm 2 cm thì diện tích phải sơn 6 mặt bên ngoài của hộp đó tăng thêm 216 cm2.
Đề thi HSG Toán 8 cấp huyện năm 2022 - 2023 phòng GDĐT Sơn Động - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 cấp huyện năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Sơn Động, tỉnh Bắc Giang; đề thi hình thức 60% trắc nghiệm + 40% tự luận, thời gian làm bài 120 phút (không kể thời gian giao đề); đề thi có đáp án và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 12 tháng 04 năm 2023. Trích dẫn Đề thi HSG Toán 8 cấp huyện năm 2022 – 2023 phòng GD&ĐT Sơn Động – Bắc Giang : + Một người thợ sử dụng thước ngắm có góc vuông để đo chiều cao của một cây dừa, với các kích thước đo được như hình bên. Khoảng cách từ vị trí gốc cây đến vị trí chân của người thợ là 4,8m và từ vị trí chân đứng thẳng trên mặt đất đến mắt của người ngắm là 1,6m. Hỏi với các kích thước trên thì người thợ đo được chiều cao của cây đó là bao nhiêu? (làm tròn đến mét). + Cho hình vuông ABCD cạnh a, một đường thẳng d bất kỳ đi qua C cắt AB tại E và AD tại F. 1) Chứng minh: BE DF BC CD. 2) Chứng minh: 2 2 BE AE BF AF. 3) Xác định vị trí của đường thẳng d để DF BE 4. + Năm nay, tuổi bố gấp 4 lần tuổi Hoàng. Nếu 5 năm nữa thì tuổi bố gấp 3 lần tuổi Hoàng. Hỏi năm nay Hoàng bao nhiêu tuổi?