Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán 12 năm 2022 - 2023 sở GDĐT Lâm Đồng

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Lâm Đồng; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thang điểm 20, thời gian làm bài 180 phút (không kể thời gian phát đề). Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 12 năm 2022 – 2023 sở GD&ĐT Lâm Đồng : + Đầu năm học 2022 – 2023, Trường THPT X tuyển sinh bốn lớp 10 theo 4 tổ hợp môn lựa chọn. Khi kết thúc đợt tuyển sinh, còn thiếu 5 học sinh theo chỉ tiêu được giao. Trong đợt tuyển sinh bổ sung có 5 học sinh đủ điều kiện xét tuyển và được chọn lớp học theo tổ hợp môn lựa chọn. Tính xác suất để trong 5 học sinh đó có 3 học sinh chọn vào cùng một lớp, trong ba lớp còn lại có hai lớp mỗi lớp có 1 học sinh chọn và một lớp không có học sinh nào chọn. + Bạn An có một tấm tôn phế liệu hình tam giác đều có cạnh 60 cm, bạn An dự định cắt bỏ ở ba góc ba phần bằng nhau sao cho phần còn lại là hình gồm một tam giác đều và ba hình chữ nhật có kích thước bằng nhau (như hình 1), rồi gấp ba hình chữ nhật lại tạo thành một chậu hoa hình lăng trụ tam giác đều (như hình 2): Hình 1 Hình 2. Biết phần cạnh tấm tôn bị cắt bỏ ở mỗi góc bằng 10 cm, tính thể tích chậu hoa đó. + Cho hình chóp S.ABC có đáy ABC là tam giác cân tại B, ABC = 120°, AB = a, SB vuông góc với mặt phẳng (ABC), góc giữa hai mặt phẳng (SAC) và (ABC) bằng 45. Gọi M là trung điểm của AC và N là trung điểm của SM. Điểm P trên cạnh SC sao cho SP = 2PC. Tính theo a thể tích khối chóp S.ABC và khoảng cách giữa hai đường thẳng BN và MP.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn HSG tỉnh lớp 12 môn Toán THPT năm 2021 2022 sở GD ĐT Quảng Bình
Nội dung Đề thi chọn HSG tỉnh lớp 12 môn Toán THPT năm 2021 2022 sở GD ĐT Quảng Bình Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Quảng Bình; kỳ thi được diễn ra vào ngày 22 tháng 03 năm 2022. Trích dẫn đề thi chọn HSG tỉnh Toán lớp 12 THPT năm 2021 – 2022 sở GD&ĐT Quảng Bình : + Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật có AB a AD b SA vuông góc với đáy và SA a 2. Gọi M là điểm nằm trên cạnh SA sao cho AM x 0 2 x a. a. Tính diện tích thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng MBC theo a, b và x. b. Tìm x theo a để mặt phẳng MBC chia khối chóp S.ABCD thành hai phần có thể tích bằng nhau. c. Trong trường hợp ABCD là hình vuông cạnh a, gọi K là điểm di động trên CD, H là hình chiếu của S lên BK. Tìm vị trí của điểm K trên CD để thể tích khối chóp S.ABH là lớn nhất. + Gọi A là tập hợp tất cả các số tự nhiên có 5 chữ số. Chọn ngẫu nhiên một số từ tập hợp A. Tính xác suất để chọn được một số sao cho số đó chia hết cho 7 và có chữ số hàng đơn vị bằng 1. + Trong không gian Oxyz, cho mặt cầu 2 2 2 Sx y z 1 4 8 và hai điểm A 3 0 0 B 4 2 1. Gọi M là một điểm bất kỳ thuộc mặt cầu S. Tìm giá trị nhỏ nhất của biểu thức MA MB 2.
Đề thi học sinh giỏi tỉnh lớp 12 môn Toán năm 2021 2022 sở GD ĐT Quảng Nam
Nội dung Đề thi học sinh giỏi tỉnh lớp 12 môn Toán năm 2021 2022 sở GD ĐT Quảng Nam Bản PDF Đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Quảng Nam mã đề 101 gồm 05 trang với 40 câu trắc nghiệm, thời gian làm bài 90 phút (không kể thời gian giao đề), kỳ thi được diễn ra vào ngày 22 tháng 03 năm 2022. Trích dẫn đề thi học sinh giỏi tỉnh Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Quảng Nam : + Có bao nhiêu số tự nhiên có bảy chữ số đôi một khác nhau, gồm ba chữ số lẻ, bốn chữ số chẵn mà trong đó có đúng một chữ số lẻ xen kẽ giữa hai chữ số chẵn? + Cho tứ diện đều ABCD có cạnh bằng 22 và tâm mặt cầu ngoại tiếp của nó là O. Mặt phẳng (P) song song với hai cạnh AB, CD và cách tâm O một khoảng bằng 1/2. Diện tích thiết diện của tứ diện ABCD cắt bởi mặt phẳng (P) bằng? + Trong không gian Oxyz, cho hai điểm A(-1;-5;2), B(3;3;-2) và đường thẳng d; hai điểm C, D thay đổi trên d sao cho CD = 63. Biết rằng khi C(a;b;c) (b < 2) thì tổng diện tích của tất cả các mặt của tứ diện ABCD đạt giá trị nhỏ nhất. Tính tổng a + b + c.
Đề thi học sinh giỏi tỉnh lớp 12 môn Toán năm 2021 2022 sở GD ĐT Bắc Ninh
Nội dung Đề thi học sinh giỏi tỉnh lớp 12 môn Toán năm 2021 2022 sở GD ĐT Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2021 – 2022 sở Giáo dục và Đào tạo UBND tỉnh Bắc Ninh; đề thi được biên soạn theo dạng đề 100% trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết mã đề 146. Trích dẫn đề thi học sinh giỏi tỉnh Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Bắc Ninh : + Trong không gian Oxyz cho điểm A 1 2 0 và mặt phẳng P x y z 2 2 3 0. Mặt phẳng 2x by cz d 0 (với b c d) đi qua điểm A, song song với trục Oy và vuông góc với P. Khi đó giá trị b c d bằng? + Cho hàm số y f x là hàm số có đạo hàm cấp hai liên tục trên. Gọi C là đồ thị của hàm số đã cho. Tiếp tuyến với đồ thị C tại các điểm có hoành độ x x 1 0 lần lượt tạo với trục hoành góc 0 0 30 45. Tiếp tuyến với đồ thị C tại các điểm có hoành độ x x 1 2 lần lượt song song với đường thẳng 1 d y x 2 1 và vuông góc với đường thẳng 2 d y x 5. + Ban đầu ta có một tam giác đều cạnh bằng 3 (hình 1). Tiếp đó ta chia mỗi cạnh của tam giác thành ba đoạn bằng nhau và thay mỗi đoạn ở giữa bằng hai đoạn bằng nó sao cho chúng tạo với đoạn bỏ đi một tam giác đều về phía bên ngoài để được hình như hình 2. Quay hình 2 xung quanh trục d ta được một khối tròn xoay có thể tích bằng?
Đề thi học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2021 2022 sở GD ĐT Bến Tre
Nội dung Đề thi học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2021 2022 sở GD ĐT Bến Tre Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 Trung học Phổ thông (THPT) năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Bến Tre; kỳ thi được diễn ra vào sáng thứ Sáu ngày 11 tháng 03 năm 2022. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Bến Tre : + Cho hàm số y có đồ thị (C), đường thẳng d: y = -x + m (m là tham số) và hai điểm M(3;4), N(4;5). Tìm các giá trị thực của m để đường thẳng d cắt (C) tại hai điểm phân biệt A, B sao cho bốn điểm A, B, M, N lập thành tứ giác lồi AMBN có diện tích bằng 2. + Cho tam giác ABC với điểm D trên cạnh BC (D khác B, D khác C) và điểm M trên đoạn AD (M khác A, M khác D). Gọi I, K lần lượt là trung điểm của MB, MC. Tia DI cắt AB tại điểm P, tia DK cắt AC tại điểm Q. Chứng minh: PQ // IK. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 2a. Gọi E, F lần lượt là trung điểm của AB và BC, H là giao điểm của AF và DE. Biết SH vuông góc với mặt phẳng (ABCD) và góc giữa đường thẳng SA và mặt phẳng (ABCD) bằng 60°. Tính thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng SH, DF theo a.