Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lần 2 Toán 8 năm 2022 - 2023 phòng GDĐT Thủ Đức - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi lần thứ 2 môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Thủ Đức, thành phố Hồ Chí Minh; kỳ thi được diễn ra vào ngày 18 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi lần 2 Toán 8 năm 2022 – 2023 phòng GD&ĐT Thủ Đức – TP HCM : + Cho tam giác ABC có ba góc nhọn (AB < AC) có ba đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh: BFC đồng dạng BDA và BFD = ACB. b) Tia EF cắt đường thẳng BC tại K. Chứng minh: CD.FK = CK.FD. c) Gọi M là trung điểm của BC. Qua M vẽ đường thẳng vuông góc với HM, đường thẳng này cắt các đường thẳng AB, AD, AC lần lượt tại P, Q, R. Chứng minh: PQ = QR. + Hai địa điểm A và B cách nhau 200 km. Cùng một lúc một xe ô tô khởi hành từ A và một xe máy khởi hành từ B đi ngược chiều nhau. Xe ô tô và xe máy gặp nhau tại điểm C cách A 120 km. Nếu xe ô tô khởi hành sau xe máy một giờ thì sẽ gặp nhau tại điểm D cách C một khoảng là bao nhiêu km? Biết rằng vận tốc của xe ô tô lớn hơn vận tốc của xe máy là 20 km/h. + Cho tứ giác ABCD có các điểm M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Gọi I là điểm nằm trong tứ giác ABCD. Tính diện tích tứ giác ABCD biết SAMIQ = 32 (cm2), SBMIN = 50 (cm2) và SDPIQ = 20 (cm2).

Nguồn: toanmath.com

Đọc Sách

Đề thi Olympic Toán 8 năm 2016 - 2017 phòng GDĐT Thanh Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olympic Toán 8 năm 2016 – 2017 phòng GD&ĐT Thanh Oai – Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi Olympic Toán 8 năm 2016 – 2017 phòng GD&ĐT Thanh Oai – Hà Nội : + Cho tam giác ABC. Gọi P là giao điểm của ba đường phân giác trong của tam giác đó. Đường thẳng qua P và vuông góc với CP, cắt CA và CB theo thứ tự tại M và N. Chứng minh. + Chứng minh rằng giữa ba số nguyên tố lớn hơn 3 luôn tìm được hai số có tổng hoặc hiệu chia hết cho 12. + Tìm số tự nhiên n để biểu thức sau là số nguyên tố 12n2 – 5n – 25.
Đề thi kiến thức Toán 8 năm 2016 - 2017 phòng GDĐT Quận 1 - TP HCM
Ngày 23 tháng 03 năm 2017, phòng Giáo dục và Đào tạo Quận 1, thành phố Hồ Chí Minh tổ chức kỳ thi kiến thức ngày hội học sinh cấp Trung học Cơ sở môn Toán 8 năm học 2016 – 2017. Đề thi kiến thức Toán 8 năm 2016 – 2017 phòng GD&ĐT Quận 1 – TP HCM có đáp án và lời giải chi tiết. Trích dẫn đề thi kiến thức Toán 8 năm 2016 – 2017 phòng GD&ĐT Quận 1 – TP HCM : + Khối lớp 8 của một trường THCS có bốn lớp 81, 82, 83 và 84. Trung bình cộng số học sinh của bốn lớp là 39,5. Nếu chuyển 4 em từ lớp 81 sang lớp 82 thì số học sinh của hai lớp bằng nhau. Số học sinh 83 bằng trung bình cộng số học sinh hai lớp 81 và 82. Số học sinh 84 bằng trung bình cộng số học sinh hai lớp 82 và 83. Tìm số học sinh ban đầu của mỗi lớp. + Cho tam giác nhọn ABC, BD và CE là hai đường cao cắt nhau tại H. a) Chứng minh rằng: HED ~ HBC. b) Gọi M là trung điểm của cạnh BC, N là điểm trên tia đối của tia HA. Đường thẳng qua N vuông góc với MH cắt AB, AC lần lượt tại I, K. Chứng minh rằng: N là trung điểm của IK. + Cho tam giác đều ABC, điểm M nằm trong tam giác ABC. Vẽ MD vuông góc với BC tại D, ME vuông góc với AC tại E, MF vuông góc với AB tại F. Đặt MD = x, ME = y, MF = z. a) Chứng minh rằng x + y + z không phụ thuộc vào vị trí của điểm M. b) Xác định vị trí của điểm M để x2 + y2 + z2 đạt giá trị nhỏ nhất.
Đề thi học sinh giỏi huyện Toán 8 năm 2016 - 2017 phòng GDĐT Thạch Hà - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi học sinh giỏi huyện Toán 8 năm 2016 – 2017 phòng GD&ĐT Thạch Hà – Hà Tĩnh; đề thi có đáp án, lời giải và thang điểm. Trích dẫn đề thi học sinh giỏi huyện Toán 8 năm 2016 – 2017 phòng GD&ĐT Thạch Hà – Hà Tĩnh : + Giải vô địch bóng đá quốc gia Việt Nam 2016-2017 có 14 đội tham gia. Mỗi đội phải thi đấu cới các đội còn lại 1 trận ở sân nhà và một trận ở sân khách. Kết thúc mùa giải có tất cả bao nhiêu trận đấu? + Trong 1 hộp có 60 viên bi màu, gồm 25 bi màu đỏ, 20 bi màu xanh, và 15 bi màu vàng. Cần lấy ra ít nhất là bao nhiêu viên bi (mà không cần nhìn vào hộp) để có 3 viên bi khác màu? + Cho một lưới ô vuông có kích thước 5×5 ô. Người ta điền vào mỗi ô của lưới một trong các số -1; 0; 1. Xét tổng của các số theo từng cột, theo từng hàng và theo từng hàng chéo. Chứng minh rằng trong tất cả các tổng đó luôn tồn tại hai tổng có giá trị bằng nhau.
Đề thi học sinh giỏi Toán 8 năm 2016 - 2017 phòng GDĐT Nga Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi học sinh giỏi Toán 8 năm 2016 – 2017 phòng GD&ĐT Nga Sơn – Thanh Hóa; đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi học sinh giỏi Toán 8 năm 2016 – 2017 phòng GD&ĐT Nga Sơn – Thanh Hóa : + Một người dự định đi xe máy từ A đến B với vận tốc 30km/h, nhưng sau khi đi được 1 giờ người ấy nghỉ hết 15 phút, do đó phải tăng vận tốc thêm 10km/h để đến B đúng giờ đã định. Tính quãng đường AB? + Cho hình vuông ABCD có AC cắt BD tại O, M là điểm bất kỳ thuộc cạnh BC (M khác B, C).Tia AM cắt đường thẳng CD tại N. Trên cạnh AB lấy điểm E sao cho BE = CM. a) Chứng minh: ∆OEM vuông cân. b) Chứng minh: ME // BN. c) Từ C kẻ CH vuông góc BN (H thuộc BN). Chứng minh rằng ba điểm O, M, H thẳng hàng. + Cho các số thực dương a, b, c thỏa mãn a + b + c = 2016. Tìm giá trị nhỏ nhất của biểu thức: P.