Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bộ 20 đề ôn thi THPT 2021 môn Toán - Lê Văn Đoàn

Tài liệu gồm 177 trang, được biên soạn và giảng dạy bởi thầy giáo Lê Văn Đoàn, tuyển tập 20 đề ôn thi THPT 2021 môn Toán có đáp án, giúp học sinh rèn luyện mức điểm từ 08 – 09 điểm trong kỳ thi tốt nghiệp Trung học Phổ thông môn Toán năm học 2020 – 2021. Bài mẫu số 01. Góc giữa đường thẳng và mặt phẳng → Tạo bởi nó và hình chiếu của nó. Bài mẫu số 02. Thể tích khối chóp có chứa dữ kiện góc. Bài mẫu số 03. Khoảng cách từ điểm đến mặt phẳng → đưa về chân đường cao. Bài mẫu số 04. Khoảng cách giữa hai đường thẳng chéo nhau → tạo song song. Bài mẫu số 05. Góc giữa hai mặt phẳng và bài toán thể tích chứa góc giữa hai mặt phẳng. Bài mẫu số 06. Tích phân hàm số phân nhánh (Đề tham khảo TN THPT năm 2021 – Câu 41). Bài mẫu số 07. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số hợp khi cho đồ thị f'(x). Bài mẫu số 08. Bài toán chứa tham số trong phương trình mũ và lôgarít (dạng cô lập tham số). Bài mẫu số 09. Bài toán chứa tham số trong phương trình mũ và lôgarít (dạng f(u) = f(v)). Bài mẫu số 10. Xác định các thuộc tính của số phức loại 2. Bài mẫu số 11. Viết phương trình đường thẳng, mặt phẳng có chữ “cắt” → tìm điểm. Bài mẫu số 12. Nguyên hàm – Tích phân kết hợp. Đổi biến & Từng phần, Đổi biến & Hữu tỷ. Bài mẫu số 13. Lấy nguyên hàm (khi cho f(x0) = k) hoặc lấy tích phân hai vế với cận thích hợp. Bài mẫu số 14. Tìm tham số m để hàm số đơn điệu trên K. Bài mẫu số 15. Tâm tỉ cự & Tâm tỉ cự di động. Bài mẫu số 16. Thể tích khối đa diện khi đề che dấu chiều cao hoặc kết hợp tâm mặt cầu ngoại tiếp. Bài mẫu số 17. Cực trị của biểu thức chứa môđun số phức. Bài mẫu số 18. Bài toán cực trị (thực tế) trong nón trụ cầu. Bài mẫu số 19. Một số bài toán cực trị trong Oxyz cơ bản. Bài mẫu số 20. Bài toán chứa tham số trong bất phương trình. Bài mẫu số 21. Bài toán liên quan đến diện tích hình phẳng và thể tích vật thể tròn xoay. Bài mẫu số 22. Bài toán liên quan đến đơn điệu và cực trị của hàm số.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán tốt nghiệp THPT 2021 lần 1 trường Lương Thế Vinh - Hà Nội
Ngày … tháng 01 năm 2021, trường THCS – THPT Lương Thế Vinh, thành phố Hà Nội tổ chức kỳ thi thử tốt nghiệp THPT môn Toán năm học 2020 – 2021 lần thứ nhất. Đề thi thử Toán tốt nghiệp THPT 2021 lần 1 trường Lương Thế Vinh – Hà Nội mã đề 101 gồm 07 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi thử Toán tốt nghiệp THPT 2021 lần 1 trường Lương Thế Vinh – Hà Nội : + Trong không gian với hệ trục tọa độ Oxyz, cho hai véctơ a(3;-2;m), b(2;m;-1) với m là tham số nhận giá trị thực. Tìm giá trị của m để hai véctơ a và b vuông góc với nhau. + Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm A(1;1;4), B(5;-1;3), C(3;1;5) và D(2;2;m) (với m là tham số). Xác định m để bốn điểm A, B, C và D tạo thành bốn đỉnh của một tứ diện. + Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3;0;0), B(-3;0;0) và C(0;5;1). Gọi M là một điểm nằm trên mặt phẳng (Oxy) sao cho MA + MB = 10, giá trị nhỏ nhất của MC là?
Đề thi thử tốt nghiệp THPT 2021 môn Toán lần 1 trường THPT Hồng Lĩnh - Hà Tĩnh
Đề thi thử tốt nghiệp THPT 2021 môn Toán lần 1 trường THPT Hồng Lĩnh – Hà Tĩnh gồm 04 mã đề 001, 002, 003, 004; đề thi gồm 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án. Trích dẫn đề thi thử tốt nghiệp THPT 2021 môn Toán lần 1 trường THPT Hồng Lĩnh – Hà Tĩnh : + Cho khối chóp ABCD. Gọi G và E lần lượt là trọng tâm của tam giác ABD và ABC. Khẳng định nào sau đây là khẳng định đúng? A. Đường thẳng GE song song với đường thẳng CD. B. Đường thẳng GE cắt đường thẳng CD. C. Đường thẳng GE và đường thẳng AD cắt nhau. D. Đường thẳng GE và đường thẳng CD chéo nhau. + Anh Thưởng dự định sử dụng hết 4 m2 kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép có kích thước không đáng kể). Bể cá có dung tích lớn nhất bằng bao nhiêu (kết quả làm tròn đến hàng phần trăm)? + Cho hàm số y = f(x) có đạo hàm f'(x) = (x – 3)^2020.(pi^2x – pi^x + 2021).(x^2 – 2x) với mọi x thuộc R. Gọi S là tập tất cả các giá trị nguyên của tham số m để hàm số y = f(x^2 – 8x + m) có đúng ba điểm cực trị x1, x2, x3 thoả mãn x1^2 + x2^2 + x3^2 = 50. Khi đó tổng các phần tử của S bằng?
Đề thi thử TNTHPT 2021 môn Toán lần 1 trường THPT Yên Dũng 2 - Bắc Giang
Nhằm giúp các em học sinh khối 12 ôn tập kiến thức, rèn luyện kỹ năng giải toán, ngày … tháng 12 năm 2020, trường THPT Yên Dũng số 2, tỉnh Bắc Giang tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2020 – 2021 lần thứ nhất. Đề thi thử TNTHPT 2021 môn Toán lần 1 trường THPT Yên Dũng 2 – Bắc Giang mã đề 901 gồm 07 trang, đề được biên soạn theo hình thức đề thi trắc nghiệm với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án mã đề 901, 902, 903, 904, 905, 906, 907, 908. Trích dẫn đề thi thử TNTHPT 2021 môn Toán lần 1 trường THPT Yên Dũng 2 – Bắc Giang : + Cho hình chóp S.ABCD có đáy là hình vuông và có mặt phẳng (SAB) vuông góc với mặt phẳng đáy, tam giác SAB là tam giác đều. Gọi I và E lần lượt là trung điểm của cạnh AB và BC; H là hình chiếu vuông góc của I lên cạnh SC. Khẳng định nào sau đây sai? A. Mặt phẳng (SIC) vuông góc với mặt phẳng (SDE). B. Mặt phẳng (SAI) vuông góc với mặt phẳng (SBC). C. Góc giữa hai mặt phẳng (SAB) và (SIC) là góc BIC. D. Góc giữa hai mặt phẳng (SIC) và (SBC) là góc giữa hai đường thẳng IH và BH. + Một đề thi thử THPT Quốc gia môn Toán dạng trắc nghiệm gồm 50 câu, mỗi câu có 4 phương án trả lời trong đó chỉ có 1 phương án đúng, mỗi câu trả lời đúng được 0,2 điểm. Một thí sinh làm bài bằng cách chọn ngẫu nhiên 1 trong 4 phương án ở mỗi câu. Tính xác suất để thí sinh đó được 6 điểm. + Cho hình lăng trụ ABC.A’B’C’ có đáy là tam vuông cân tại A. Hình chiếu vuông góc của điểm A’ lên mặt phẳng (ABC) trùng với trọng tâm tam giác ABC. Biết khoảng cách giữa hai đường thẳng AA’ và BC bằng √17a/6, cạnh bên AA’ bằng 2a. Tính theo a thể tích V của khối lăng trụ ABC.A’B’C’ biết AB < a√3.
Đề thi KSCL Toán 12 lần 1 năm 2020 - 2021 trường THPT Liễn Sơn - Vĩnh Phúc
Đề thi KSCL Toán 12 lần 1 năm học 2020 – 2021 trường THPT Liễn Sơn – Vĩnh Phúc mã đề 101 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút (không kể thời gian giáo viên coi thi phát đề), đề thi có đáp án. Trích dẫn đề thi KSCL Toán 12 lần 1 năm 2020 – 2021 trường THPT Liễn Sơn – Vĩnh Phúc : + Một cửa hàng bán bưởi Đoan Hùng của Phú Thọ với giá bán mỗi quả là 50.000 đồng. Với giá bán này thì của hàng chỉ bán được khoảng 40 quả bưởi. Cửa hàng này dự định giảm giá bán, ước tính nếu cửa hàng cứ giảm mỗi quả 5000 đồng thì số bưởi bán được tăng thêm là 50 quả. Xác định giá bán để của hàng đó thu được lợi nhuận lớn nhất, biết rằng giá nhập về ban đầu mỗi quả là 30.000 đồng. + Chọn khẳng định sai: A. Mỗi đỉnh của khối đa diện là đỉnh chung của ít nhất 3 mặt. B. Hai mặt bất kì của khối đa diện luôn có ít nhất một điểm chung. C. Mỗi mặt của khối đa diện có ít nhất ba cạnh. D. Mỗi cạnh của khối đa diện là cạnh chung của đúng 2 mặt của khối đa diện. + Cho tứ diện ABCD có AB = CD. Mặt phẳng (a) qua trung điểm của AC và song song với AB, CD cắt ABCD theo thiết diện là: A. Hình vuông B. Hình thoi C. Hình tam giác D. Hình chữ nhật.