Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG cấp huyện lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Cẩm Xuyên Hà Tĩnh

Nội dung Đề thi HSG cấp huyện lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Cẩm Xuyên Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi HSG cấp huyện Toán lớp 8 năm 2016 – 2017 phòng GD&ĐT Cẩm Xuyên – Hà Tĩnh Đề thi HSG cấp huyện Toán lớp 8 năm 2016 – 2017 phòng GD&ĐT Cẩm Xuyên – Hà Tĩnh Xin chào quý thầy cô và các em học sinh lớp 8! Dưới đây là đề thi HSG cấp huyện môn Toán lớp 8 năm 2016 – 2017 do phòng GD&ĐT Cẩm Xuyên – Hà Tĩnh biên soạn. Bạn hãy giải và phân tích bài toán sau đây cẩn thận nhé: Bài toán 1: Cho hình vuông ABCD. Gọi I là một điểm nằm giữa A và B. Tia DI và tia CB cắt nhau ở K. Kẻ đường thẳng qua D vuông góc với DI. Đường thẳng này cắt đường thẳng BC tại Q. E là trung điểm của IQ, tia DE cắt BC tại F. Qua I vẽ đường thẳng song song với AD cắt DF tại H. Chứng minh rằng: a) Tứ giác IHQF là hình thoi. b) Tổng 1/DI2 + 1/DK2 không đổi khi I thay đổi trên cạnh AB. Bài toán 2: Cho tam giác ABC vuông tại A có AB = 6cm và AC = 8cm. Gọi M là trung điểm của cạnh AB, N là trung điểm của cạnh AC. Tính độ dài đoạn thẳng MN. Bài toán 3: Cho tam giác ABC vuông tại A, đường phân giác BD. Biết AD = 3 cm và DC = 5 cm. Tính độ dài AB và BC. Hy vọng rằng bài toán sẽ giúp các em rèn luyện và củng cố kiến thức môn Toán một cách hiệu quả. Chúc các em ôn tập tốt và đạt kết quả cao trong kì thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG Toán 8 năm 2020 - 2021 trường THCS Trung Nguyên - Vĩnh Phúc
Thứ Ba ngày 30 tháng 03 năm 2021, trường THCS Trung Nguyên, huyện Yên Lạc, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng đội tuyển học sinh giỏi cấp huyện môn Toán lớp 8 năm học 2020 – 2021. Đề thi HSG Toán 8 năm 2020 – 2021 trường THCS Trung Nguyên – Vĩnh Phúc gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HSG Toán 8 năm 2020 – 2021 trường THCS Trung Nguyên – Vĩnh Phúc : + Cho các số nguyên a, b, c thỏa mãn 2a + b, 2b + c, 2c + a đều là các số chính phương. Biết rằng một trong ba số chính phương trên chia hết cho 3. + Cho O là trung điểm của đoạn thẳng AB. Trên cùng một nửa mặt phẳng có bờ là AB vẽ tia Ax, By cùng vuông góc với AB. Trên tia Ax lấy điểm C (khác A), qua O kẻ đường thẳng vuông góc với OC cắt tia By tại D. a) Chứng minh AB CA = 4BD AB. b) Kẻ OM vuông góc với CD tại M, từ M kẻ MH vuông góc với AB tại H. Chứng minh BC đi qua trung điểm của MH. c) Tìm vị trí điểm C trên tia Ax để diện tích tứ giác ABDC nhỏ nhất. + Năm vận động viên mang số 1; 2; 3; 4 và 5 được chia bằng mọi cách thành hai nhóm. Chứng tỏ rằng ở một trong hai nhóm ta luôn có hai vận động viên mà hiệu các số họ mang trùng với một trong các số mà người của nhóm đó mang.
Đề thi HSG huyện Toán 8 năm 2020 - 2021 phòng GDĐT Kỳ Anh - Hà Tĩnh
Đề thi HSG huyện Toán 8 năm 2020 – 2021 phòng GD&ĐT Kỳ Anh – Hà Tĩnh gồm 01 trang với 13 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút.
Đề thi học sinh giỏi cấp tỉnh Toán 8 năm 2020 - 2021 sở GDĐT Bắc Ninh
Đề thi học sinh giỏi cấp tỉnh Toán 8 năm học 2020 – 2021 sở GD&ĐT Bắc Ninh gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được tổ chức ngày 18 tháng 03 năm 2021.
Đề thi HSG Toán 8 cấp trường năm 2020 - 2021 trường THCS Đông Kinh - Lạng Sơn
Đề thi HSG Toán 8 cấp trường năm 2020 – 2021 trường THCS Đông Kinh – Lạng Sơn gồm có 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 120 phút, kỳ thi được diễn ra vào ngày … tháng 11 năm 2020, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HSG Toán 8 cấp trường năm 2020 – 2021 trường THCS Đông Kinh – Lạng Sơn : + Cho hình vuông ABCD. Qua A vẽ hai đường thẳng vuông góc với nhau lần lượt cắt BC tại P và R, cắt CD tại Q và S. a) Chứng minh tam giác AQR và tam giác APS là các tam giác cân. b) QR cắt PS tại H; M, N là trung điểm của QR và PS. Chứng minh tứ giác AMHN là hình chữ nhật. c) Chứng minh P là trực tâm tam giác SQR. d) Chứng minh MN là đường trung trực của AC. + Tìm giá trị nhỏ nhất của biểu thức: A = 13×2 + y2 + 4xy – 2y – 16x + 2015. + Cho hai số a, b thỏa mãn điều điều kiện a + b = 1. Chứng minh a3 + b3 + ab >= 1/2.