Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Nắm trọn chuyên đề mũ - logarit và tích phân

Cuốn sách gồm 455 trang, được biên soạn bởi nhóm tác giả Tư Duy Toán Học 4.0: Phan Nhật Linh, Nguyễn Duy Hiếu, Nguyễn Khánh Linh, Lê Huy Long, tóm tắt toàn bộ lý thuyết và phương pháp giải các dạng toán, các ví dụ minh họa và bài tập rèn luyện từ cơ bản đến nâng cao chuyên đề mũ – logarit và tích phân, giúp các em hoàn thiện kiến thức, rèn tư duy và rèn luyện tốc độ làm bài; tất cả các bài tập trong sách đều có giải chi tiết 100% tiện lợi cho việc so sánh đáp án và tra cứu thông tin. Mục lục cuốn sách nắm trọn chuyên đề mũ – logarit và tích phân: PHẦN I . MŨ VÀ LOGARIT. CHỦ ĐỀ 1. MỞ ĐẦU VỀ LŨY THỪA. Dạng 1. Tính, rút gọn, so sánh các số liên quan đến lũy thừa. CHỦ ĐỀ 2. MŨ – LOGARIT. Dạng 1. Biến đổi mũ – logarit. CHỦ ĐỀ 3. HÀM SỐ LŨY THỪA, MŨ VÀ LOGARIT. Dạng 1. Bài tập về hàm số lũy thừa, hàm số mũ và hàm số logarit. CHỦ ĐỀ 4. PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LOGARIT. Dạng 1. Bài tập về phương trình mũ, phương trình logarit số 01. Dạng 2. Bài tập về phương trình mũ, phương trình logarit số 02. Dạng 3. Bài tập về phương trình mũ, phương trình logarit chứa tham số 01. Dạng 4. Bài tập về phương trình mũ, phương trình logarit chứa tham số 02. CHỦ ĐỀ 5. BPT MŨ – BPT LOGARIT. Dạng 1. Biện luận nghiệm của phương trình mũ – logarit. Dạng toán tìm GTLN và GTNN của hàm số mũ – logarit. Dạng toán liên quan đến hàm đặc trưng. Dạng toán tìm cặp số nguyên thỏa mãn điều kiện. Dạng toán lãi suất. Dạng toán thực tế liên quan đến sự tang trưởng. Dạng toán thường xuất hiện trong đề thi của Bộ GD&ĐT. PHẦN II . NGUYÊN HÀM – TÍCH PHÂN. CHỦ ĐỀ 1. NGUYÊN HÀM. Dạng 1. Phương pháp tính nguyên hàm. CHỦ ĐỀ 2. TÍCH PHÂN. Dạng 1. Phương pháp tính tích phân. Dạng 2. Tích phân cho bởi nhiều hàm. Dạng 3. Tích phân hàm ẩn phần 1. Dạng 3. Tích phân hàm ẩn phần 2. Dạng 4. Ứng dụng tích phân tính diện tích, thể tích. Dạng 5. Tích phân trong đề thi của Bộ GD&ĐT.

Nguồn: toanmath.com

Đọc Sách

Toàn tập cực trị mũ, logarit vận dụng cao
Tài liệu gồm 38 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tổng hợp toàn tập cực trị mũ, logarit vận dụng cao (phiên bản năm 2021) nằm trong hệ thống bài tập trắc nghiệm chuyên đề lũy thừa, mũ và logarit lớp 12 THPT. Vận dụng cao cực trị siêu việt (mũ, logarit). + Cực trị siêu việt p1. + Cực trị siêu việt p2. + Cực trị siêu việt p3. + Cực trị siêu việt p4. + Cực trị siêu việt p5. + Cực trị siêu việt p6. + Cực trị siêu việt p7. + Cực trị siêu việt p8. + Cực trị siêu việt p9. + Cực trị siêu việt p10. + Cực trị siêu việt p11. + Cực trị siêu việt p12. + Cực trị siêu việt p13. + Cực trị siêu việt p14. + Cực trị siêu việt p15. + Cực trị siêu việt p16. + Cực trị siêu việt p17. + Cực trị siêu việt p18. + Cực trị siêu việt p19.
Toàn tập lũy thừa, mũ và logarit cơ bản
Tài liệu gồm 96 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức, tổng hợp toàn tập lũy thừa, mũ và logarit cơ bản (phiên bản năm 2021) nằm trong hệ thống bài tập trắc nghiệm chuyên đề lũy thừa, mũ và logarit lớp 12 THPT. Cơ bản hàm số lũy thừa. + Cơ bản hàm số lũy thừa – p1. + Cơ bản hàm số lũy thừa – p2. + Cơ bản hàm số lũy thừa – p3. + Cơ bản hàm số lũy thừa – p4. + Cơ bản hàm số lũy thừa – p5. + Cơ bản hàm số lũy thừa – p6. + Cơ bản hàm số lũy thừa – p7. Cơ bản hàm số mũ. + Cơ bản hàm số mũ – p1. + Cơ bản hàm số mũ – p2. + Cơ bản hàm số mũ – p3. + Cơ bản hàm số mũ – p4. + Cơ bản hàm số mũ – p5. + Cơ bản hàm số mũ – p6. + Cơ bản hàm số mũ – p7. Cơ bản hàm số logarit. + Cơ bản hàm số logarit – p1. + Cơ bản hàm số logarit – p2. + Cơ bản hàm số logarit – p3. + Cơ bản hàm số logarit – p4. + Cơ bản hàm số logarit – p5. + Cơ bản hàm số logarit – p6. + Cơ bản hàm số logarit – p7. Cơ bản phương trình, bất phương trình mũ. + Cơ bản phương trình, bất phương trình mũ – p1. + Cơ bản phương trình, bất phương trình mũ – p2. + Cơ bản phương trình, bất phương trình mũ – p3. + Cơ bản phương trình, bất phương trình mũ – p4. + Cơ bản phương trình, bất phương trình mũ – p5. + Cơ bản phương trình, bất phương trình mũ – p6. + Cơ bản phương trình, bất phương trình mũ – p7. + Cơ bản phương trình, bất phương trình mũ – p8. + Cơ bản phương trình, bất phương trình mũ – p9. + Cơ bản phương trình, bất phương trình mũ – p10. Cơ bản phương trình, bất phương trình logarit. + Cơ bản phương trình, bất phương trình logarit – p1. + Cơ bản phương trình, bất phương trình logarit – p2. + Cơ bản phương trình, bất phương trình logarit – p3. + Cơ bản phương trình, bất phương trình logarit – p4. + Cơ bản phương trình, bất phương trình logarit – p5. + Cơ bản phương trình, bất phương trình logarit – p6. + Cơ bản phương trình, bất phương trình logarit – p7. + Cơ bản phương trình, bất phương trình logarit – p8. + Cơ bản phương trình, bất phương trình logarit – p9. Bài tập tổng hợp lũy thừa, mũ, logarit. + Bài tập tổng hợp – p1. + Bài tập tổng hợp – p2 . + Bài tập tổng hợp – p3 . + Bài tập tổng hợp – p4 . + Bài tập tổng hợp – p5 . + Bài tập tổng hợp – p6 . + Bài tập tổng hợp – p7 . + Bài tập tổng hợp – p8 . + Bài tập tổng hợp – p9 . + Bài tập tổng hợp – p10 . + Bài tập tổng hợp – p11 . + Bài tập tổng hợp – p12 . + Bài tập tổng hợp – p13 . + Bài tập tổng hợp – p14 . + Bài tập tổng hợp – p15 . + Bài tập tổng hợp – p16 . + Bài tập tổng hợp – p17 . + Bài tập tổng hợp – p18 . + Bài tập tổng hợp – p19 . + Bài tập tổng hợp – p20.
32 bài toán phương trình và bất phương trình mũ - logarit chứa tham số
Tài liệu gồm 25 trang, được biên soạn bởi thầy giáo Phạm Văn Nghiệp, tuyển chọn 32 bài toán phương trình và bất phương trình mũ – logarit chứa tham số có đáp án và lời giải chi tiết; tài liệu hỗ trợ học sinh lớp 12 trong quá trình học thêm chương trình Toán 12 phần Giải tích chương 2: Hàm số lũy thừa, hàm số mũ và hàm số logarit. Trích dẫn tài liệu 32 bài toán phương trình và bất phương trình mũ – logarit chứa tham số: + Cho phương trình 4 10 2 16 3 0 x x x m với m là tham số thực. Có bao nhiêu số nguyên m để phương trình có hai nghiệm thực phân biệt? + Gọi S là tập hợp nghiệm nguyên của bất phương trình 2 2 2 2 2 log 2 2 log 2 log x mx mx x. Có bao nhiêu giá trị nguyên của tham số m để tập hợp S có đúng 8 phần tử? + Cho hàm số bậc 4 có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số m và m 2021 2021 để phương trình 3 2 log f x x f x mx mx f x mx có hai nghiệm phân biệt dương? + Có bao nhiêu giá trị nguyên của tham số a thuộc 20 20 để bất phương trình 2 3 3 3 log log 1 0 x a x a có không quá 20 nghiệm nguyên? + Cho phương trình 3 2020 log 2021 x a x với a là số thực dương. Biết tích các nghiệm của phương trình là 32. Mệnh đề nào sau đây là đúng?
Phương pháp đánh giá và sử dụng tính đơn điệu hàm số để giải PT - BPT mũ và lôgarit
Tài liệu gồm 45 trang, được tổng hợp bởi thầy giáo Lê Bá Bảo, hướng dẫn phương pháp đánh giá và sử dụng tính đơn điệu của hàm số để giải phương trình và bất phương trình mũ và lôgarit, giúp học sinh tham khảo khi học chương trình Giải tích 12 chương 2: Hàm số lũy thừa, hàm số mũ và hàm số logarit. Trích dẫn tài liệu phương pháp đánh giá và sử dụng tính đơn điệu hàm số để giải PT – BPT mũ và lôgarit: + THPT GIA LỘC – HẢI DƯƠNG NĂM 2018 – 2019 LẦN 02: Cho hai số thực a b thỏa mãn 100 40 16 4 log log log12 a b a b. Giá trị của a b bằng? + THPT CHUYÊN BẮC GIANG NĂM 2018 – 2019 LẦN 01: Phương trình 2 3 5 6 2 5 x x x có một nghiệm dạng loga x b b với ab là các số nguyên dương thuộc khoảng 1 7. Khi đó a b 2 bằng? + THPT YÊN ĐỊNH – THANH HÓA 2018 2019 LẦN 2: Cho xy là hai số thực không âm thỏa mãn 2 2 2 1 2 1 log 1 y x x y x. Giá trị nhỏ nhất của biểu thức 2 1 2 4 2 1 x P e x y là? + THPT CHUYÊN THÁI BÌNH NĂM 2018 – 2019 LẦN 04: Cho các số thực x y với x 0 thỏa mãn e e e e 3 1 1 3 1 1 1 3 x y xy xy x y x y y. Gọi m là giá trị nhỏ nhất của biểu thức T x y 2 1. Mệnh đề nào sau đây đúng? + THPT CHUYÊN VĨNH PHÚC LẦN 02 NĂM 2018 – 2019: Biết rằng phương trình e e 2cos x x ax a là tham số có 3 nghiệm thực phân biệt. Hỏi phương trình e e 2cos 4 x x ax có bao nhiêu nghiệm thực phân biệt?