Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi Toán THPT cấp tỉnh năm 2021 - 2022 sở GDĐT Yên Bái

Đề thi chọn học sinh giỏi Toán THPT cấp tỉnh năm 2021 – 2022 sở GD&ĐT Yên Bái gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài 180 phút; kỳ thi được diễn ra vào ngày 28 tháng 09 năm 2021. Trích dẫn đề thi chọn học sinh giỏi Toán THPT cấp tỉnh năm 2021 – 2022 sở GD&ĐT Yên Bái : + Một nhóm học sinh gồm 10 em trong đó có 2 học sinh lớp 11A1, 3 học sinh lớp 12A2 và 5 học sinh lớp 12A1. Xếp ngẫu nhiên 10 học sinh đó thành một hàng ngang. Tính xác suất để không có 2 học sinh cùng lớp đứng cạnh nhau. + Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, SA = 2a, BD = 3.AC, mặt bên SAB là tam giác cân tại A, hình chiếu vuông góc của đỉnh S trên mặt phẳng đáy trùng với trung điểm H của đoạn AO. 1) Tính thể tích của khối chóp S.ABCD. 2) Tính khoảng cách giữa hai đường thẳng SB và CD. + Cho tam giác ABC (AB < AC) nội tiếp đường tròn (O), M là trung điểm của cạnh BC. Đường phân giác trong của BAC cắt cạnh BC tại D và cắt đường tròn (O) tại điểm P (P khác A). Gọi E là điểm đối xứng với D qua M; trên đường thẳng AO và đường thẳng AD lần lượt lấy các điểm H, F sao cho các đường thẳng HD, FE cùng vuông góc với đường thẳng BC. 1) Gọi K là giao điểm của PE và DH. Chứng minh rằng BHCK là tứ giác nội tiếp và bốn điểm B, H, C, F cùng nằm trên một đường tròn. 2) Gọi (w) là đường tròn qua bốn điểm B, H, C, F và T là giao điểm khác F của AD và (w). Biết đường tròn ngoại tiếp tam giác MTP cắt đường thẳng TH tại điểm thứ hai Q (Q khác T). Chứng minh rằng đường thẳng QA tiếp xúc với đường tròn (O).

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG Toán 12 năm 2018 - 2019 cụm trường THPT huyện Yên Dũng - Bắc Giang
Đề thi HSG Toán 12 năm 2018 – 2019 cụm trường THPT huyện Yên Dũng – Bắc Giang mã đề 121, đề được biên soạn theo hình thức trắc nghiệm kết hợp tự luận, phần trắc nghiệm gồm 40 câu, chiếm 40% số điểm, phần tự luận gồm 03 câu, chiếm 60% số điểm, học sinh làm bài thi trong 120 phút. Trích dẫn đề thi HSG Toán 12 năm 2018 – 2019 cụm trường THPT huyện Yên Dũng – Bắc Giang : + Một trường THPT tại huyện Yên Dũng – Bắc Giang có 18 học sinh đạt giải học sinh giỏi cấp tỉnh, trong đó có 11 học sinh nam và 7 học sinh nữ. Chọn ngẫu nhiên 6 học sinh trong số các học sinh trên đi tham quan học tập tại Hà Nội. Tính xác suất để có ít nhất một học sinh nam và một học sinh nữ được chọn. [ads] + Cho dãy số (un) được xác định bởi: u1 = 2, un = 2un-1 + 3n – 1. Công thức số hạng tổng quát của dãy số đã cho là biểu thức có dạng a2^n + bn + c, với a, b, c là các số nguyên, n ≥ 2; n thuộc N. Khi đó tổng a + b + c có giá trị bằng? + Gọi S là tập hợp các số tự nhiên có 3 chữ số được lập từ tập X = {0; 1; 2; 3; 4; 5; 6; 7}.Rút ngẫu nhiên một số thuộc tập S. Tính xác suất để rút được số mà trong số đó chữ số đứng sau luôn lớn hơn hoặc bằng chữ số đứng trước.
Đề thi chọn HSG Toán 12 chuyên năm học 2018 - 2019 sở GDĐT Đồng Nai
Đề thi chọn HSG Toán 12 chuyên năm học 2018 – 2019 sở GD&ĐT Đồng Nai gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 180 phút, kỳ thi được tổ chức ngày 18 tháng 01 năm 2019 nhằm tuyển chọn các em học sinh giỏi Toán đang theo học hệ chương trình chuyên tại tỉnh Đồng Nai để tuyên dương, khen thưởng, đồng thời thành lập đội tuyển học sinh giỏi tỉnh Đồng Nai tham dự kỳ thi học sinh giỏi Toán chuyên cấp Quốc gia. Trích dẫn đề thi chọn HSG Toán 12 chuyên năm học 2018 – 2019 sở GD&ĐT Đồng Nai : + Cho m, n là các số tự nhiên thỏa mãn 4m^3 + m = 12n^3 + n. Chứng minh rằng m – n là lập phương của một số nguyên. [ads] + Cho tam giác ABC nội tiếp đường tròn (O) có trực tâm H, K là trung điểm BC và G là hình chiếu vuông góc của H trên AK. Lấy D đối xứng G qua BC và I đối xứng C qua D. Tia phân giác góc ACB cắt AB tại F và tia phân giác góc BID cắt BD ở M, MF cắt AC tại E. 1) Chứng minh rằng D nằm trên đường tròn (O). 2) Tiếp tuyến tại A của (O) cắt BC ở X, XE cắt đường tròn ngoại tiếp tam giác EBM ở điểm thứ hai là Y. Chứng minh rằng đường tròn ngoại tiếp tam giác EYD tiếp xúc đường tròn (O).
Đề thi chọn HSG Toán THPT cấp tỉnh năm 2018 - 2019 sở GDĐT Hưng Yên
giới thiệu đến thầy, cô và các em nội dung đề thi chọn HSG Toán THPT cấp tỉnh năm 2018 – 2019 sở GD&ĐT Hưng Yên, đề gồm 01 trang với 06 bài toán tự luận, học sinh làm bài thi trong thời gian 180 phút, kỳ thi nhằm phát hiện, tuyển chọn các em học sinh giỏi môn Toán THPT đang học tập tại các trường THPT tại tỉnh Hưng Yên để tuyên dương, khen thưởng, đồng thời thành lập đội tuyển học sinh giỏi Toán tỉnh Hưng Yên tham dự kỳ thi HSG Toán THPT cấp Quốc gia. Trích dẫn đề thi chọn HSG Toán THPT cấp tỉnh năm 2018 – 2019 sở GD&ĐT Hưng Yên : + Cho hàm số y = x^4 – mx^2 + 2m – 2 (C) với m là tham số. Gọi A là một điểm thuộc đồ thị (C) có hoành độ bằng 1. Tìm các giá trị của m để tiếp tuyến của đồ thị (C) tại A cắt đường tròn (T): x^2 + y^2 = 4 tại hai điểm phân biệt tạo thành một dây cung có độ dài nhỏ nhất. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh 2a và góc ABC = 60 độ. Gọi E, F lần lượt là trung điểm của các cạnh SC, SD. Biết SA = SC = SD và mặt phẳng (ABEF) vuông góc với mặt bên (SCD), tính thể tích khối chóp S.ABCD theo a. + Cho đa thức f(x) = x^4 + ax^3 + bx^2 + cx + 1 với a, b, c là số thực không âm. Biết rằng f(x) = 0 có 4 nghiệm thực, chứng minh f(2018) = 2019^4.
Đề thi chọn học sinh giỏi cấp tỉnh Toán THPT năm 2018 - 2019 sở GDĐT Lào Cai
Đề thi chọn học sinh giỏi cấp tỉnh Toán THPT năm 2018 – 2019 sở GD&ĐT Lào Cai được biên soạn và tổ chức thi ngày 22 tháng 01 năm 2019 nhằm tìm kiếm và tuyên dương các em học sinh khối THPT giỏi môn Toán đang học tập tại các trường THPT tại tỉnh Lào Cai, đề gồm 01 trang với 05 bài toán tự luận, học sinh làm bài thi trong vòng 180 phút. Trích dẫn đề thi chọn học sinh giỏi cấp tỉnh Toán THPT năm 2018 – 2019 sở GD&ĐT Lào Cai : + Trong mặt phẳng với hệ tọa độ Oxy, cho hình thang vuông ABCD vuông tại A và D, có CD = 2AD = 2AB. Gọi M (2;4) là điểm thuộc cạnh AB sao cho AB = 3AM . Điểm N thuộc cạnh BC sao cho tam giác DMN cân tại M. Phương trình đường thẳng MN là 2x + y – 8 = 0. Tìm tọa độ các đỉnh của hình thang ABCD biết D thuộc đường thẳng d: x + y = 0 và điểm A thuộc đường thẳng d’: 3x + y – 8 = 0. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Biết hình chiếu vuông góc của S lên mặt phẳng (ABCD) là điểm M thỏa mãn AD = 3MD. Trên cạnh CD lấy các điểm I, N sao cho góc ABM = MBI và MN vuông góc với BI. Biết góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 60°. Tính thể tích của khối chóp S.AMCB và tính khoảng cách từ N đến mặt phẳng (SBC). + Cho hàm số y = f(x) có đạo hàm f'(x) = (x – 3)^2018.(e^2x – e^x + 1/3).(x^2 – 2x) với mọi x thuộc R. Tìm tất cả các số thực m để hàm số f(x^2 – 8x + m) có đúng 3 điểm cực trị sao cho x1^2 + x2^2 + x3^2 = 50 trong đó x1, x2, x3 là hoành độ của ba điểm cực trị đó.