Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phương trình mũ và logarit - Lưu Huy Thưởng

Chuyên đề phương trình mũ và logarit – Lưu Huy Thưởng

Nguồn: toanmath.com

Đọc Sách

Bài toán lãi suất và ví dụ minh họa - Trần Thông
Trong thời điểm kỳ thi THPT quốc gia đang cận kề, tôi mạnh dạn tổng hợp một số bài toán liên quan đến lãi suất ngân hàng để các bạn học sinh có thêm tài liệu ôn tập trong kỳ thi sắp tới. Mặc dù không xuất hiện trong đề thi tham khảo của bộ giáo dục và đào tạo nhưng khả năng dạng toán này xuất hiện trong đề thi chính thức không phải là không có; đối với những bài toán gắn liền với thực tế, các bạn học sinh gặp rất nhiều khó khăn trong việc tiếp cận và sử lý, hi vọng thông qua bài viết này tôi có thể giúp các bạn giải quyết được phần nào vấn đề đó. Bài viết được chia làm ba phần: [ads] + Phần 1: Giới thiệu một số bài toán liên quan đến lãi suất ngân hàng. + Phần 2: Phân tích một số kỹ năng sử lý bài toán. + Phần 3: Trình bày một số bài tập trích từ đề thi thử của một số trường THPT trên toàn quốc.
Kỹ năng sử dụng Casio giải nhanh trắc nghiệm hàm số và mũ - logarit - Lê Anh Tuấn
Tài liệu gồm 72 trang với 15 bài: + Bài 1. Tìm giá trị lớn nhất – giá trị nhỏ nhất + Bài 2. Tìm nhanh khoảng đồng biến – nghịch biến + Bài 3. Cực trị hàm số + Bài 4. Tiếp tuyến của hàm số + Bài 5. Giới hạn của hàm số + Bài 6. Tiệm cận của đồ thị hàm số + Bài 7. Bài toán tương giao giữa hai đồ thị [ads] + Bài 8. Đạo hàm + Bài 9. Tìm số nghiệm phương trình mũ – logarit (phần 1) + Bài 10. Tìm số nghiêm phương trình mũ – logarit (phần 2) + Bài 11. Tìm số nghiệm phương trình mũ – logarit (phần 3) + Bài 12. Giải nhanh bất phương trình mũ – logarit (phần 1) + Bài 13. Giải nhanh bất phương trình mũ – logarit (phần 2) + Bài 14. Tìm số chữ số của một lũy thừa + Bài 15. Tính nhanh giá trị biểu thức mũ – logarit
Phương pháp giải bài toán lãi suất ngân hàng - Mẫn Ngọc Quang
Tài liệu gồm 18 trang hướng dẫn phương pháp giải bài toán lãi suất ngân hàng và các bài tập trắc nghiệm có lời giải chi tiết. Công thức 1: (Dành cho gửi tiền một lần) Gửi vào ngân hàng số tiền là a đồng, với lãi suất hàng tháng là r% trong n tháng. Tính cả vốn lẫn lãi T sau n tháng ? Công thức 2: (Dành cho gửi tiền hàng tháng) Một người, hàng tháng gửi vào ngân hàng số tiền là a (đồng). Biết lãi suất hàng tháng là r%. Hỏi sau n tháng, người ấy có bao nhiêu tiền ? Công thức 3: Dành cho bài toán trả góp: Gọi số tiền vay là N, lãi suất là x, n là số tháng phải trả, A là số tiền phải trả vào hàng tháng để sau n tháng là hết nợ. Công thức 4: Rút sổ tiết kiệm theo định kỳ: Thực ra bài toán này giống bài 3, nhưng mình lại hiểu là ngân hàng nợ tiền của người cho vay. Trái lại so với vay trả góp. Công thức 5: Gửi tiền theo kỳ hạn 3 tháng, 6 tháng, 1 năm … [ads]
Một số bài toán cơ bản về tính lãi suất ngân hàng - Hoàng Tiến Trung
Tài liệu gồm 8 trang trình bày công thức giải các bài toán lãi suất ngân hàng kèm theo các ví dụ mẫu có lời giải chi tiết. + Lãi đơn: Lãi được tính theo tỉ lệ phần trăm trong một khoảng thời gian cố định trước. Ví dụ : Khi ta gửi tiết kiệm 50 (triệu đồng) vào một ngân hàng với lãi suất 6,9% /năm thì sau một năm ta nhận được số tiền lãi là: 50 * 6,9% = 3,45 (triệu đồng) – Số tiền lãi này như nhau được cộng vào hàng năm. Kiểu tính lãi này được gọi là lãi đơn. – Sau hai năm số tiền cả gốc lẫn lãi là: 50 + 2 * 3,45 = 56,9 (triệu đồng) – Sau n năm số tiền cả gốc lẫn lãi là: 50 + n * 3,45 (triệu đồng) [ads] + Lãi kép: Sau một đơn vị thời gian (kỳ hạn), tiền lãi được gộp vào vốn và được tính lãi. Loại lãi này được gọi là lãi kép. Ví dụ: Khi gửi tiết kiệm 50 (triệu đồng) vào một ngân hàng với lãi suất 6,9%/năm thì sau một năm, ta nhận được số tiền cả gốc lẫn lãi là : 50 + 3,45 =  53,45 (triệu đồng) – Toàn bộ số tiền này được gọi là gốc. – Tổng số tiền cuối năm thứ hai là: 53,45 + 53,45 * 6,9% = 53,45 * (1 + 6,9%) (triệu đồng)