Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Giới hạn của dãy số, giới hạn của hàm số và hàm số liên tục - Nguyễn Chín Em

Tài liệu gồm 176 trang được biên soạn bởi thầy giáo Nguyễn Chín Em, tổng hợp lý thuyết trọng tâm cần nắm, hướng dẫn giải các dạng toán và tuyển chọn câu hỏi và bài toán trắc nghiệm có đáp án và lời giải chi tiết các chủ đề: giới hạn của dãy số, giới hạn của hàm số và hàm số liên tục … trong chương trình Đại số và Giải tích 11 chương 4. Khái quát nội dung chuyên đề giới hạn của dãy số, giới hạn của hàm số và hàm số liên tục – Nguyễn Chín Em: CHUYÊN ĐỀ 1 . GIỚI HẠN DÃY SỐ. A TÓM TẮT LÝ THUYẾT 1 DÃY SỐ CÓ GIỚI HẠN. 1.1 Định nghĩa dãy số có giới hạn 0. 1.2 Một số dãy số có giới hạn 0 thường gặp. 2 DÃY SỐ CÓ GIỚI HẠN HỮU HẠN. 2.1 Định nghĩa dãy số có giới hạn. 2.2 Một số định lí. 2.3 Tổng quát của cấp số nhân lùi vô hạn. 3 DÃY SỐ CÓ GIỚI HẠN VÔ CỰC. 3.1 Dãy số có giới hạn +∞. 3.2 Một vài quy tắc tìm giới hạn vô cực. 3.3 Một số kết quả. B CÁC DẠNG TOÁN Dạng 1. Sử dụng định nghĩa chứng minh rằng lim un = L. Dạng 2. Tính giới hạn của dãy số bằng các định lí về giới hạn. Dạng 3. Tính tổng của cấp số nhân lùi vô hạn. Dạng 4. Dãy số có giới hạn vô cực. C CÂU HỎI TRẮC NGHIỆM CÓ ĐÁP ÁN CHUYÊN ĐỀ 2 . GIỚI HẠN CỦA HÀM SỐ. A TÓM TẮT LÝ THUYẾT 1 Giới hạn của hàm số tại một điểm. 2 Giới hạn của hàm số tại vô cực. 3 Một số định lí về giới hạn hữu hạn. 4 Giới hạn một bên. 5 Một vài quy tắc tìm giới hạn vô cực. 6 Các dạng vô định. [ads] B CÁC DẠNG TOÁN Dạng 1. Sử dụng định nghĩa giới hạn của hàm số tìm giới hạn. Dạng 2. Chứng minh rằng lim f(x) khi x → x0 không tồn tại. Dạng 3. Các định lí về giới hạn và giới hạn cơ bản để tìm giới hạn. Dạng 4. Tính giới hạn một bên của hàm số. Dạng 5. Giới hạn của hàm số số kép. Dạng 6. Một vài qui tắc tính giới hạn vô cực. Dạng 7. Dạng 0/0. Dạng 8. Giới hạn dạng 1^∞, 0·∞, ∞^0. C CÂU HỎI TRẮC NGHIỆM CÓ ĐÁP ÁN CHUYÊN ĐỀ 3 . HÀM SỐ LIÊN TỤC. A TÓM TẮT LÝ THUYẾT 1 Hàm số liên tục tại một điểm. 2 Hàm số liên tục trên một khoảng. 3 Các định lí về hàm số liên tục. B CÁC DẠNG TOÁN Dạng 1. Xét tính liên tục của hàm số tại một điểm – Dạng I. Dạng 2. Xét tính liên tục của hàm số tại một điểm – Dạng II. Dạng 3. Xét tính liên tục của hàm số trên một khoảng. Dạng 4. Sử dụng tính liên tục của hàm số để chứng minh. Dạng 5. Sử dụng tính liên tục của hàm số để xét dấu hàm số. C CÂU HỎI TRẮC NGHIỆM CÓ ĐÁP ÁN

Nguồn: toanmath.com

Đọc Sách

Tài liệu giới hạn, hàm số liên tục Toán 11 CTST
Tài liệu gồm 78 trang, bao gồm tóm tắt lý thuyết, các dạng toán, bài tập tự luyện và bài tập trắc nghiệm chuyên đề giới hạn, hàm số liên tục trong chương trình môn Toán 11 Chân Trời Sáng Tạo (CTST), có đáp án và hướng dẫn giải. Bài 1 . GIỚI HẠN DÃY SỐ. A. TÓM TẮT LÝ THUYẾT. I. Giới hạn hữu hạn của dãy số. 1. Giới hạn 0 của dãy số. 2. Giới hạn hữu hạn của dãy số. II. Các phép toán về giới hạn hữu hạn của dãy số. III. Tổng của cấp số nhân lùi vô hạn. IV. Giới hạn vô cực. B. CÁC DẠNG TOÁN. – Dạng 1. Tính giới hạn của dãy số. – Dạng 2. Tính tổng của các cấp số nhân lùi vô hạn. C. BÀI TẬP TỰ LUYỆN. D. BÀI TẬP TRẮC NGHIỆM. E. HƯỚNG DẪN GIẢI. Bài 2 . GIỚI HẠN HÀM SỐ. A. TÓM TẮT LÝ THUYẾT. I. Giới hạn của hàm số tại một điểm. 1. Giới hạn hữu hạn của hàm số tại một điểm. 2. Định lí và các phép toán về giới hạn hữu hạn của hàm số tại một điểm. 3. Giới hạn một phía. 4. Giới hạn vô cực của hàm số tại một điểm. 5. Quy tắc về giới hạn vô cực. II. Giới hạn của hàm số tại vô cực. 1. Giới hạn hữu hạn của hàm số tại vô cực. 2. Giới hạn vô cực tại vô cực. B. CÁC DẠNG TOÁN. – Dạng 1. Giới hạn hàm số tại một điểm x → x0. + Dạng 1.1. Sử dụng định nghĩa và tính chất cơ bản. + Dạng 1.2. Các vô định thường gặp. – Dạng 2. Giới hạn một phía x → x0+; x → x0-. + Dạng 2.1. Sử dụng định nghĩa và tính chất cơ bản. + Dạng 2.2. Các dạng vô định thường gặp. – Dạng 3. Giới hạn hàm số tại vô cực. + Dạng 3.1. Sử dụng định nghĩa và tính chất cơ bản. + Dạng 3.2. Các dạng vô định thường gặp. C. BÀI TẬP TỰ LUYỆN. D. BÀI TẬP TRẮC NGHIỆM. E. HƯỚNG DẪN GIẢI. Bài 3 . HÀM SỐ LIÊN TỤC. A. TÓM TẮT LÝ THUYẾT. I. Hàm số liên tục tại một điểm x0. II. Hàm số liên tục tại trên một khoảng, trên một đoạn. III. Một số kết quả được thừa nhận. B. CÁC DẠNG TOÁN. – Dạng 1. Xét tính liên tục của hàm số 0 0 g x khi x x f x a khi x x tại 0. – Dạng 2. Xét tính liên tục của hàm số 0 0 g x khi x x f x h x khi x x tại 0 x x. – Dạng 3. Tìm m để hàm số 0 0 g x khi x x f x h m khi x x liên tục tại 0 x x. – Dạng 4. Tìm m để hàm số 0 0 g x khi x x f x h x m khi x x liên tục tại 0 x x. – Dạng 5. Chứng minh phương trình có nghiệm. C. BÀI TẬP TỰ LUYỆN. D. BÀI TẬP TRẮC NGHIỆM. E. HƯỚNG DẪN GIẢI. ÔN TẬP CHƯƠNG. A. TÓM TẮT LÝ THUYẾT. 1. Giới hạn của dãy số. 2. Giới hạn của hàm số. 3. Hàm số liên tục. B. CÁC DẠNG TOÁN. 1. Tính giới hạn của dãy số, hàm số. 2. Tính tổng của cấp số nhân lùi vô hạn. 3. Tính liên tục của hàm số. C. BÀI TẬP TỰ LUYỆN ĐỀ KIỂM TRA CUỐI CHƯƠNG.
Chuyên đề giới hạn, hàm số liên tục Toán 11 CTST
Tài liệu gồm 383 trang, bao gồm lý thuyết, hướng dẫn giải bài tập trong sách giáo khoa, các dạng bài tập tự luận và hệ thống bài tập trắc nghiệm chuyên đề giới hạn, hàm số liên tục trong chương trình SGK Toán 11 Chân Trời Sáng Tạo (viết tắt: Toán 11 CTST), có đáp án và lời giải chi tiết. BÀI 1 . GIỚI HẠN CỦA DÃY SỐ. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Chứng minh dãy số có giới hạn 0. + Dạng 2. Tìm giới hạn bằng 0 của dãy số. + Dạng 3. Tính giới hạn của dãy số (un) có un = p(n)/q(n) trong đó p(n), q(n) là các đa thức của n. + Dạng 4. Tính giới hạn của dãy số (un) có un = p(n)/q(n) trong đó p(n), q(n) là các biểu thức chứa căn của n. + Dạng 5. Nhân với một lượng liên hợp. + Dạng 6. Tính giới hạn của dãy số (un) có un = p(n)/q(n) trong đó p(n), q(n) là các biểu thức chứa hàm mũ. + Dạng 7. Dãy số (un) trong đó un là một tổng hoặc một tích của n số hạng (hoặc n thừa số). + Dạng 8. Dãy số (un) cho bằng công thức truy hồi. + Dạng 9. Giới hạn của dãy chứa đa thức hoặc căn theo n. + Dạng 10. Giới hạn của dãy chứa lũy thừa bậc n. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Dạng 0. Câu hỏi lý thuyết. + Dạng 1. Dãy số dạng phân thức. + Dạng 2. Dãy số chứa căn thức. + Dạng 3. Dãy số chứa lũy thừa. + Dạng 4. Tổng cấp số nhân lùi vô hạng. + Dạng 5. Một số bài toán khác. BÀI 2 . GIỚI HẠN CỦA HÀM SỐ. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Hàm số có giới hạn hữu hạn tại 0 x không có dạng vô định. + Dạng 2. Dạng vô định 0/0. + Dạng 3. Dạng vô định ∞/∞. + Dạng 4. Dạng vô định ∞ – ∞. + Dạng 5. Dạng vô định 0.∞ + Dạng 6. Giới hạn một bên. + Dạng 7. Giới hạn vô cực. + Dạng 8. Liên quan đến hàm ẩn. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Giới hạn hữu hạn. + Dạng 2. Giới hạn một bên. + Dạng 3. Giới hạn tại vô cực. + Dạng 4. Giới hạn vô định. BÀI 3 . HÀM SỐ LIÊN TỤC. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Hàm số liên tục tại một điểm. + Dạng 2. Hàm số liên tục trên một khoảng. + Dạng 3. Chứng minh phương trình có nghiệm. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Câu hỏi lý thuyết. + Dạng 2. Liên tục tại một điểm. + Dạng 3. Liên tục trên khoảng. + Dạng 4. Chứng minh phương trình có nghiệm.
Chuyên đề giới hạn của dãy số bồi dưỡng học sinh giỏi Toán THPT
Tài liệu gồm 51 trang, được biên soạn bởi tác giả Cao Hoàng Hạ (Giáo viên trường THPT số 2 An Nhơn, tỉnh Bình Định), hướng dẫn một số phương pháp tìm giới hạn của dãy số, bồi dưỡng học sinh giỏi Toán THPT. Trong kỳ thi học sinh giỏi môn Toán cấp tỉnh và cấp quốc gia, bài toán tìm giới hạn của dãy số và các bài toán liên quan đến dãy số thường xuyên xuất hiện và là một trong những bài toán cơ bản của đề thi. Việc tạo cho học sinh một cách nhìn tổng quát cho bài toán tìm giới hạn của dãy số là rất quan trọng, từ đó giúp các em có tư duy rộng hơn trong việc đánh giá tính chất của một dãy số, và lựa chọn phương pháp thích hợp nhất để tìm giới hạn của một dãy số. Dĩ nhiên mỗi phương pháp có ưu thế riêng cho việc giải quyết một lớp các dãy số cụ thể, cũng có những dãy số có thể giải bằng nhiều cách khác nhau. Ở đây, trong chuyên đề này, tác giả muốn đưa ra một số phương pháp cơ bản để nhận dạng và tìm giới hạn của dãy số, bên cạnh đó nhấn mạnh đến cách nhìn tổng quát, liệu có thể giải bài toán theo nhiều cách hay không? Và có thể tổng quát để tạo ra các dãy số mới tương tự như thế nào? MỤC LỤC : Một số phương pháp tìm giới hạn của dãy số. I. Sử dụng định lý Weierstrass để tìm giới hạn dãy số 6. II. Phương pháp so sánh dãy số 14. III. Phương pháp ước lượng để tìm giới hạn một số dãy số đặc biệt 26. IV. Định lý lagrange và dãy số sinh bởi nghiệm của phương trình 34. V. Xác định công thức số hạng tổng quát từ hệ thức truy hồi và tìm giới hạn 43.
Chuyên đề giới hạn, hàm số liên tục Toán 11 KNTTvCS
Tài liệu gồm 377 trang, bao gồm lý thuyết, hướng dẫn giải bài tập trong sách giáo khoa, các dạng bài tập tự luận và hệ thống bài tập trắc nghiệm chuyên đề giới hạn, hàm số liên tục trong chương trình SGK Toán 11 Kết Nối Tri Thức Với Cuộc Sống (viết tắt: Toán 11 KNTTvCS), có đáp án và lời giải chi tiết. BÀI 15 . GIỚI HẠN CỦA DÃY SỐ. + Dạng toán 1. Chứng minh dãy số có giới hạn 0. + Dạng toán 2. Tìm giới hạn bằng 0 của dãy số. + Dạng toán 3. Tính giới hạn của dãy số (un) có (un) = P(n)/Q(n), trong đó P(n), Q(n) là các đa thức của n. + Dạng toán 4. Tính giới hạn của dãy số (un) có (un) = P(n)/Q(n), trong đó P(n), Q(n) là các biểu thức chứa căn của n. + Dạng toán 5. Nhân với một lượng liên hợp. + Dạng toán 6. Tính giới hạn của dãy số (un) có (un) = P(n)/Q(n), trong đó P(n), Q(n) là các biểu thức chứa hàm mũ a^n, b^n, c^n. + Dạng toán 7. Dãy số (un) trong đó un là một tổng (hoặc một tích) của n số hạng (hoặc n thừa số). + Dạng toán 8. Dãy số (un) cho bằng công thức truy hồi. + Dạng toán 9. Giới hạn của dãy chứa đa thức hoặc căn theo n. + Dạng toán 10. Giới hạn của dãy chứa lũy thừa bậc n. BÀI 16 . GIỚI HẠN CỦA HÀM SỐ. + Dạng toán 1. Hàm số có giới hạn hữu hạn tại x0 không có dạng vô định. + Dạng toán 2. Dạng vô định 0/0. + Dạng toán 3. Dạng vô định ∞/∞. + Dạng toán 4. Dạng vô định ∞ − ∞. + Dạng toán 5. Dạng vô định 0.∞. + Dạng toán 6. Giới hạn một bên. + Dạng toán 7. Giới hạn vô cực. + Dạng toán 8. Liên quan đến hàm ẩn. BÀI 17 . HÀM SỐ LIÊN TỤC. + Dạng toán 1. Hàm số liên tục tại một điểm. + Dạng toán 2. Hàm số liên tục trên một khoảng. + Dạng toán 3. Chứng minh phương trình có nghiệm.