Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 - 2022 sở GDĐT Hải Phòng

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 – 2022 sở GD&ĐT Hải Phòng; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm (bảng chính thức do sở Giáo dục và Đào tạo thành phố Hải Phòng công bố). Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 – 2022 sở GD&ĐT Hải Phòng : + Cho hai phương trình (ẩn x; tham số a b). Tìm tất cả các cặp số thực (a;b) để mỗi phương trình trên đều có hai nghiệm phân biệt thỏa mãn 21 0 xxx, trong đó 0 x là nghiệm chung của hai phương trình và 1 2 x x, lần lượt là hai nghiệm còn lại của phương trình (1), phương trình (2). + Cho tam giác nhọn ABC (AB AC) nội tiếp đường tròn (O). Gọi I là tâm đường tròn bàng tiếp trong góc BAC của tam giác ABC. Đường thẳng AI cắt BC tại D, cắt đường tròn (O) tại EE A. a) Chứng minh E là tâm đường tròn ngoại tiếp tam giác IBC. b) Kẻ IH vuông góc với BC tại H. Đường thẳng EH cắt đường tròn (O) tại F (F E). Chứng minh AF FI. c) Đường thẳng FD cắt đường tròn (O) tại MM F, đường thẳng IM cắt đường tròn (O) tại N (N M). Đường thẳng qua O song song với FI cắt AI tại J, đường thẳng qua J song song với AH cắt IH tại P. Chứng minh ba điểm NEP thẳng hàng. + Cho tập hợp X = {1;2;3;…;101}. Tìm số tự nhiên n (n ≥ 3) nhỏ nhất sao cho với mọi tập con A tùy ý gồm n phần tử của X đều tồn tại 3 phần tử đôi một phân biệt abc A thỏa mãn abc.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán tuyển sinh 10 năm 2019 - 2020 phòng GDĐT Lục Nam - Bắc Giang
Đề thi thử Toán tuyển sinh vào lớp 10 năm học 2019 – 2020 phòng GD&ĐT Lục Nam – Bắc Giang mã đề 401 và mã đề 402, đề gồm 2 trang với 20 câu trắc nghiệm và 4 câu tự luận, học sinh làm bài trong khoảng thời gian 90 phút. Trích dẫn đề thi thử Toán tuyển sinh 10 năm 2019 – 2020 phòng GD&ĐT Lục Nam – Bắc Giang : + Trong buổi lao động của một trường có số học sinh nam nhiều hơn số học sinh nữ là 15 em. Giáo viên phụ trách phân công làm 2 nhiệm vụ: trồng cây và dọn vệ sinh. Có 24 bạn nam và 24 bạn nữ tham gia trồng cây. Số bạn nam dọn vệ sinh gấp đôi số bạn nữ dọn vệ sinh. Hỏi có bao nhiêu bạn nam và bạn nữ tham gia buổi lao động? [ads] + Cho đường tròn (O;R), dây MN cố định (MN < 2R). Kẻ đường kính AB vuông góc với dây MN tại E. Lấy điểm C thuộc dây MN (C khác M, N, E). BC cắt đường tròn (O) tại điểm K (K khác B). 1) Chứng minh: Tứ giác AKCE nội tiếp được một đường tròn. 2) Chứng minh: BM^2 = BK.BC. 3) Gọi I là giao điểm của AK và MN; D là giao điểm của AC và BI. Chứng minh điểm C cách đều ba cạnh của tam giác DEK. + Trên đường tròn (O;R) lấy hai điểm A, B sao cho số đo cung lớn AB bằng 270°. Độ dài dây cung AB bằng?
Đề thi thử Toán vào lớp 10 THPT năm 2019 trường THCS Thái Thịnh - Hà Nội
Nhằm giúp các em học sinh lớp 9 ôn tập, rèn luyện môn Toán để chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 THPT năm học 2019 – 2020, vừa qua, trường THCS Thái Thịnh (Thái Thịnh, Thịnh Quang, Đống Đa, Hà Nội) đã tổ chức kỳ thi thử vào lớp 10 THPT môn Toán. Đề thi thử Toán vào lớp 10 THPT năm 2019 trường THCS Thái Thịnh – Hà Nội được biên soạn dựa theo cấu trúc đề minh họa môn Toán tuyển sinh vào lớp 10 THPT năm học 2019 – 2020 do sở Giáo dục và Đào tạo Hà Nội đề xuất, đề gồm 1 trang với 5 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi thử Toán vào lớp 10 THPT năm 2019 trường THCS Thái Thịnh – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một trung tâm dạy nghề tổ chức cho 180 học sinh đi tham quan. Người ta dự tính: Nếu dùng loại xe lớn chuyên chở một lượt hết số học sinh thì phải điều ít hơn nếu dùng loại xe nhỏ chuyên chở một lượt hết số học sinh là 2 chiếc. Biết rằng mỗi xe lớn có nhiều hơn mỗi xe nhỏ là 15 chỗ ngồi. Tính số xe lớn, nếu loại xe đó được huy động. [ads] + Trong Oxy, cho parabol (P): y = -x^2 và đường thẳng d: y = mx + m (với m là tham số). a) Tìm điều kiện của m để (d) có điểm chung với (P). b) Khi (d) cắt (P) tại hai điểm phân biệt là A và B, gọi x1, x2 là hoành độ của A và B. Tìm m sao cho x1 = 2×2. + Cho nửa đường tròn (O;R), đường kính AB. Gọi C là điểm chính giữa cung AB. Điểm M thuộc cung AC. Hạ MH vuông góc AB tại H, AC cắt MH tại K; MB cắt AC tại E. Hạ El vuông góc AB tại I. a) Chứng minh tứ giác BHKC và AMEI nội tiếp. b) Chứng minh AK.AC = AM^2. c) Cho R = 5cm, tính giá trị của tổng S = AE.AC + BE.BM. d) Chứng minh rằng khi M di động trên cung AC thì tâm đường tròn ngoại tiếp tam giác IMC thuộc một đường thẳng cố định.
Đề thi thử Toán vào lớp 10 năm 2019 - 2020 phòng GDĐT Chí Linh - Hải Dương
Tháng 5 năm 2019, phòng Giáo dục và Đào tạo UBND thành phố Chí Linh, tỉnh Hải Dương tổ chức kỳ thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2019 – 2020 dành cho học sinh lớp 9, kỳ thi nhằm tạo điều kiện để các em được thử sức mình, rút ra được những kinh nghiệm cần thiết và xác định được cách thức ôn tập hợp lý trong quãng thời gian còn lại. Đề thi thử Toán vào lớp 10 năm 2019 – 2020 phòng GD&ĐT Chí Linh – Hải Dương được biên soạn bám sát cấu trúc đề thi môn Toán tuyển sinh vào lớp 10 THPT sở GD&ĐT tỉnh Hải Dương những năm gần đây, đề gồm 1 trang với 5 bài toán tự luận, học sinh có 90 phút để làm bài thi. [ads] Trích dẫn đề thi thử Toán vào lớp 10 năm 2019 – 2020 phòng GD&ĐT Chí Linh – Hải Dương : + Một phòng họp dự định có 120 người dự họp, nhưng khi họp có 160 người tham dự nên phải kê thêm 2 dãy ghế và mỗi dãy phải kê thêm một ghế nữa thì vừa đủ. Tính số dãy ghế dự định lúc đầu. Biết rằng số dãy ghế lúc đầu trong phòng nhiều hơn 20 dãy ghế và số ghế trên mỗi dãy ghế là bằng nhau. + Cho phương trình: x^2 + 3x + m – 1 = 0 (x là ẩn số). Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn: x1(x1^4 – 1) + x2(32×2^4 – 1) = 3. + Cho tam giác ABC có 3 góc nhọn (AB < AC) nội tiếp đường tròn tâm O, gọi AD là đường kính của đường tròn (O). Tiếp tuyến tại D của đường tròn (O) cắt đường thẳng BC tại M, đường thẳng MO cắt AB và AC lần lượt tại E và F. 1) Chứng minh: MD^2 = MC.MB. 2) Gọi H là trung điểm của BC, qua B vẽ đường thẳng song song với MO, đường thẳng này cắt AD tại P. Chứng minh đường tròn ngoại tiếp tam giác BHD đi qua P. 3) Chứng minh O là trung điểm của EF.
Đề thi thử Toán vào lớp 10 năm 2019 - 2020 trường Lương Ngọc Quyến - Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 9 đề thi thử Toán tuyển sinh vào lớp 10 năm học 2019 – 2020 trường THPT Lương Ngọc Quyến – Thái Nguyên, kỳ thi nhằm giúp các em học sinh nắm được dạng đề cũng như độ khó tương đối, để các em biết được các dạng toán cần ôn tập, cũng như có kế hoạch ôn tập phù hợp cho kỳ thi tuyển sinh vào lớp 10 THPT năm học 2019 – 2020 sắp tới. Trích dẫn đề thi thử Toán vào lớp 10 năm 2019 – 2020 trường Lương Ngọc Quyến – Thái Nguyên : + Cách tính giá cước của hãng Taxi X cho bởi bảng sau đây: BẢNG GIÁ CƯỚC TAXI (đã bao gồm 10% VAT). Giá mở cửa: 10 000 đ/0,6km. Tiếp theo đến km thứ 25: 13 000 đ/km. Từ km thứ 26 trở đi: 11 000 đ/km. Bác An đi xe của hãng taxi này hết 382 200 đ. Hỏi xe taxi chở Bác An đã đi quãng đường dài bao nhiêu km (biết rằng không có thời gian chờ)? [ads] + Cho đường tròn (O) có bán kính là x (cm) và chu vi là y (cm). Lập công thức biểu thị y theo x và cho biết y có phải là hàm số bậc nhất của x không? Vì sao? + Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn tâm O và AB < AC. Vẽ đường kính AD của đường tròn (O). Kẻ BE và CF vuông góc với AD (E, F thuộc AD). Kẻ AH vuông góc với BC (H thuộc BC). a) Chứng minh bốn điểm A, B, H, E cùng nằm trên một đường tròn. b) Gọi M là trung điểm của BC. Chứng minh ME = MF.