Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 chuyên môn Toán (vòng 1) năm 2023 - 2024 trường ĐHKH Huế

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (vòng 1) năm học 2023 – 2024 trường Đại học Khoa học Huế, tỉnh Thừa Thiên Huế; kỳ thi được diễn ra vào ngày 30 tháng 05 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 chuyên môn Toán (vòng 1) năm 2023 – 2024 trường ĐHKH Huế : + Theo kế hoạch, một xưởng phải may xong 560 bộ quần áo trong thời gian quy định với năng suất mỗi ngày là như nhau. Đến khi thực hiện, do tăng năng suất nên mỗi ngày xưởng đó may được nhiều hơn 10 bộ quần áo so với kế hoạch. Vì thế, xưởng đã hoàn thành trước kế hoạch 1 ngày. Hỏi theo kế hoạch, mỗi ngày xưởng đó phải may xong bao nhiêu bộ quần áo? + Qua điểm A nằm ngoài đường tròn (O) kẻ 2 tiếp tuyến AB, AC (B, C là các tiếp điểm) và cát tuyến AEF (AE < AF) sao cho tia AE nằm giữa hai tia AB, AO. Gọi H là giao điểm của AO và BC. a) Chứng minh tứ giác ABOC nội tiếp. b) Chứng minh AB2 = AE.AF và tứ giác EFOH nội tiếp. c) Từ E vẽ đường thẳng song song với BF cắt AB tại M và cắt BC tại N. Chứng minh E là trung điểm của đoạn thẳng MN. + Một khối đồ chơi có hình dạng là một hình trụ và một hình nón chung đáy. Biết chiều cao khối đồ chơi là h = 9 cm, chiều cao hình nón là h1, chiều cao hình trụ là h2 và h2 = 2h1. Bán kính đáy hình trụ là r = 4 cm (xem hình vẽ bên). Tính thể tích của khối đồ chơi đó.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh THPT môn Toán năm 2023 2024 sở GD ĐT Phú Yên
Nội dung Đề tuyển sinh THPT môn Toán năm 2023 2024 sở GD ĐT Phú Yên Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2023 - 2024 sở GD&ĐT Phú Yên Đề tuyển sinh THPT môn Toán năm 2023 - 2024 sở GD&ĐT Phú Yên Chúng ta hãy cùng tìm hiểu về đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 - 2024 tại sở Giáo dục và Đào tạo tỉnh Phú Yên. Đề thi bao gồm 30% câu hỏi trắc nghiệm (12 câu) và 70% câu hỏi tự luận (4 câu), thời gian làm bài là 120 phút. Kỳ thi sẽ diễn ra vào thứ Năm ngày 01 tháng 06 năm 2023. Trích dẫn một số câu hỏi trong đề tuyển sinh: Cho hai hàm số \( y = \frac{1}{2}x^2 \) và \( y = ax + b \). Tìm các hệ số a, b biết đường thẳng \( y = ax + b \) đi qua điểm M(-2;-2) và N(4;1). Giải bài toán: Một khu đất hình chữ nhật có tỷ số hai kích thước là 2/3. Người ta làm một sân bóng đá mini 5 người ở giữa, chừa lối đi xung quanh (lối đi thuộc khu đất). Lối đi rộng 2 m và diện tích 224 m2. Tính các kích thước của khu đất. Cho tam giác ABC vuông tại A, có AB = 3 cm, AC = 4 cm. Đường tròn tâm B bán kính BA và đường tròn tâm C bán kính CA cắt nhau tại điểm thứ hai D. Tính độ dài đoạn AD. Hãy thử sức và cố gắng giải quyết những bài toán thú vị này trong đề tuyển sinh môn Toán năm 2023 - 2024 tại Phú Yên nhé!
Đề tuyển sinh môn Toán (không chuyên) năm 2023 2024 sở GD ĐT Bạc Liêu
Nội dung Đề tuyển sinh môn Toán (không chuyên) năm 2023 2024 sở GD ĐT Bạc Liêu Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (không chuyên) năm 2023 - 2024 sở GD ĐT Bạc Liêu Đề tuyển sinh môn Toán (không chuyên) năm 2023 - 2024 sở GD ĐT Bạc Liêu Xin chào quý thầy cô và các em học sinh! Sytu hân hạnh giới thiệu đến quý vị đề thi tuyển sinh vào lớp 10 THPT môn Toán (không chuyên) năm học 2023 - 2024 của sở Giáo dục và Đào tạo tỉnh Bạc Liêu. Kỳ thi sẽ diễn ra vào ngày 31 tháng 05 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2023 - 2024 sở GD&ĐT Bạc Liêu: + Tìm hệ số a để đồ thị hàm số \(y = ax^2\) đi qua điểm M(-1;2). Vẽ đồ thị của hàm số \(y = ax^2\) với giá trị a vừa tìm được. + Cho phương trình bậc hai \(x^2 - 2x + m - 2 = 0\) (1) với m là tham số. a) Xác định các hệ số a, b, c của phương trình (1). b) Giải phương trình (1) khi m = -1. c) Tìm giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn: \(3(x_1^2 + x_2^2) + x_1^2x_2^2 = 11\). + Trên đường tròn tâm O, đường kính AB = 2R, lấy hai điểm C, D sao cho CD vuông góc với B tại H (H thuộc đoạn OA, H khác O và A). Gọi M là điểm trên đoạn CD (M khác C và D, CM > DM), E là giao điểm của AM với đường tròn (O) (E khác A), N là giao điểm của hai đường thẳng BE và CD. a) Chứng minh tứ giác MEBH nội tiếp đường tròn. b) Chứng minh: \(NC \times ND = NB \times NE\). c) Khi AC = R, xác định vị trí của điểm M để \(2AM + AE\) đạt giá trị nhỏ nhất. Hy vọng rằng đề thi sẽ giúp các em chuẩn bị tốt cho kỳ thi sắp tới. Chúc quý thầy cô và các em học sinh thành công! Xin cám ơn!
Đề tuyển sinh môn Toán (chuyên) năm 2023 trường THPT chuyên ĐHSP Hà Nội
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 trường THPT chuyên ĐHSP Hà Nội Bản PDF - Nội dung bài viết Đề thi tuyển sinh Toán (chuyên) trường THPT chuyên ĐHSP Hà Nội Đề thi tuyển sinh Toán (chuyên) trường THPT chuyên ĐHSP Hà Nội Sytu xin gửi đến quý thầy cô và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm 2023 của trường THPT chuyên Đại học Sư Phạm Hà Nội. Đề thi này dành riêng cho thí sinh muốn chuyên học Toán và Tin học ở vòng 2 của kỳ thi tuyển sinh. Trích đề thi: 1. Cho tam giác ABC. Đường tròn (I) nội tiếp tam giác ABC tiếp xúc với các cạnh BC, CA, AB tại D, E, F. Hai đường thẳng MG, NE cắt nhau tại P. Chứng minh rằng: a) Đường EG song song với đường MN. b) Điểm P thuộc đường tròn (I). 2. Bảy lục giác đều được sắp xếp và tô màu bằng hai màu trắng và đen như Hình 1. Mỗi lần chọn một lục giác đều, đổi màu của lục giác đó và tất cả các lục giác chung cạnh với nó (từ trắng thành đen và ngược lại). Chứng minh rằng không thể tô được các lục giác như Hình 2 dù bao nhiêu lần thực hiện cách làm trên. 3. Chứng minh rằng tồn tại số nguyên dương n > 102023 sao cho tổng tất cả các số nguyên tố nhỏ hơn n là số nguyên tố cùng nhau với n.
Đề tuyển sinh môn Toán (chung) năm 2023 trường THPT chuyên ĐHSP Hà Nội
Nội dung Đề tuyển sinh môn Toán (chung) năm 2023 trường THPT chuyên ĐHSP Hà Nội Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán năm 2023 trường THPT chuyên ĐHSP Hà Nội Đề thi tuyển sinh môn Toán năm 2023 trường THPT chuyên ĐHSP Hà Nội Xin chào quý thầy cô và các em học sinh! Sytu hân hạnh giới thiệu đến quý vị đề thi tuyển sinh vào lớp 10 môn Toán năm 2023 của trường THPT chuyên Đại học Sư Phạm Hà Nội. Đề thi này dành cho mọi thí sinh ở vòng 1, kèm theo đáp án và lời giải chi tiết. Đề thi bao gồm các câu hỏi thú vị như sau: Trong một khay nước, nhiệt độ ban đầu là 125°F. Sau mỗi giờ ở trong tủ đá, nhiệt độ giảm đi 20%. Hỏi sau bao lâu, nhiệt độ chỉ còn 64°F? Cho hình bình hành ABCD có ABC = 120° và BC = 2AB. Dựng đường tròn (O) có đường kính AC. Chứng minh các phát biểu liên quan đến tam giác ABD và tứ giác OBEH. Xét đa thức P(x) = ax² + bx + c. Tạo ra đa thức mới P1(x) = P(x + 1) + P(x - 1)² và tiếp tục quá trình này. Chứng minh rằng khi tiếp tục làm như vậy, ta sẽ đến một đa thức không có nghiệm. Hy vọng đề thi sẽ là cơ hội cho các em thực hành và củng cố kiến thức môn Toán. Chúc quý thí sinh tự tin và thành công trong kỳ thi sắp tới!