Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Hà Đông - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo quận Hà Đông, thành phố Hà Nội. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Hà Đông – Hà Nội : + Chứng minh rằng trong hai số a và b có đúng một số chia hết cho 5. + Cho hình vuông ABCD, gọi M và N theo thứ tự là trung điểm của AB và BC. Các đường thẳng DN và CM cắt nhau tại E. 1) Chứng minh rằng: CE.MB = CB.EN. 2) Chứng minh rằng: AE = DC. 3) Tính tỉ số. + Cho 2023 điểm trên mặt phẳng. Biết rằng cứ 3 điểm bất kì trong số 2023 điểm nói trên bao giờ cũng có hai điểm mà khoảng cách giữa chúng nhỏ hơn 2cm. Chứng minh rằng có ít nhất có 1012 điểm trong số 2023 điểm nói trên nằm trong một đường tròn có bán kính bằng 3cm.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 8 năm 2022 - 2023 trường THCS Lê Quý Đôn - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát đội tuyển học sinh giỏi môn Toán 8 năm học 2022 – 2023 trường THCS Lê Quý Đôn, tỉnh Bắc Giang; kỳ thi được diễn ra vào ngày 11 tháng 02 năm 2023; đề thi có đáp án và hướng dẫn giải. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 trường THCS Lê Quý Đôn – Bắc Giang : + Cho các số thực a b thỏa mãn: 2 2 a b ab a b 1 0. Tính giá trị của biểu thức 3 4 Ma b 3 2 2022. + Cho a và b là các số tự nhiên thoả mãn 2 2 2 3 aa bb. Chứng minh rằng: a b và 221 a b là các số chính phương. + Cho xyz là các số thực thỏa mãn điều kiện 2 2 2 3 1011 2 x y yz z. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức Qxyz.
Đề học sinh giỏi huyện Toán 8 năm 2022 - 2023 phòng GDĐT Lục Nam - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Lục Nam, tỉnh Bắc Giang; đề thi hình thức 30% trắc nghiệm (20 câu – 06 điểm) kết hợp 70% tự luận (04 câu – 14 điểm), thời gian làm bài 120 phút; kỳ thi được diễn ra vào ngày 09 tháng 02 năm 2023. Trích dẫn Đề học sinh giỏi huyện Toán 8 năm 2022 – 2023 phòng GD&ĐT Lục Nam – Bắc Giang : + Chọn đáp án đúng nhất: Cho hai số thực x y thỏa mãn 2 2 2 x y x y xy 2 4 6 1. Giá trị của biểu thức Axy 2022 2023 bằng? + Tam giác ABC vuông tại A có AC = 8 cm, BC = 10 cm. Tia phân giác của góc BAC cắt cạnh BC tại D. Tỉ số diện tích của tam giác ABD và tam giác ACD là? + Cho hình vuông ABCD có 2 đường chéo AC và BD cắt nhau tại O. Trên cạnh BC lấy N (0 < NC < NB), đường thẳng vuông góc với ON tại O cắt AB tại M. Gọi E là giao điểm của AN với DC, gọi K là giao điểm của ON với BE. 1. Chứng minh ∆MON vuông cân. 2. Chứng minh MN // BE. 3. Gọi H là giao điểm của KC và BD. Chứng minh: OB NC CH OH NB KH.
Đề HSG huyện Toán 8 vòng 2 năm 2022 - 2023 phòng GDĐT Lập Thạch - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 vòng 2 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Lập Thạch, tỉnh Vĩnh Phúc; đề thi hình thức tự luận với 10 bài toán, thời gian làm bài 150 phút. Trích dẫn Đề HSG huyện Toán 8 vòng 2 năm 2022 – 2023 phòng GD&ĐT Lập Thạch – Vĩnh Phúc : + Biết rằng đa thức f(x) khi chia cho x − 2 thì được số dư là 6067; khi chia cho x + 3 thì được số dư là -4043. Tìm đa thức dư khi chia đa thức f(x) cho đa thức x² + x – 6. + Cho hình vuông ABCD có cạnh bằng 8. Trên cạnh BC, lấy điểm M sao cho BM = 5. Gọi N là giao điểm của đường thẳng CD và đường thẳng vuông góc với AM tại A. Gọi I là trung điểm của MN. Hãy tính độ dài đoạn thẳng DI. + Cho hình vuông ABCD có cạnh bằng a. Trên cạnh AD lấy điểm M sao cho AM = 3MD. Kẻ tia Bx cắt cạnh CD tại I sao cho ABM = MBI. Kẻ tia phân giác của CBI, tia này cắt cạnh CD tại N. a) Chứng minh rằng: MN = AM + NC. b) Tính diện tích tam giác BMN theo a.