Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra đội tuyển Toán năm 2022 trường chuyên Hùng Vương Bình Dương

Nội dung Đề kiểm tra đội tuyển Toán năm 2022 trường chuyên Hùng Vương Bình Dương Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề kiểm tra đội dự tuyển học sinh giỏi môn Toán năm học 2022 – 2023 trường THPT chuyên Hùng Vương, tỉnh Bình Dương; kỳ thi được diễn ra trong hai ngày: 05/08/2022 và 06/08/2022. Trích dẫn đề kiểm tra đội tuyển Toán năm 2022 trường chuyên Hùng Vương – Bình Dương : + Cho tam giác ABC nội tiếp đường tròn (O); B, C cố định và A di động trên đường tròn (O). Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H. a) Gọi P là giao điểm của FD và BE; Q là giao điểm của FC và DE; K là hình chiếu của D lên PQ. Chứng minh rằng BKD = DKC. b) Kẻ đường kính AL của đường tròn (O); tia LH cắt đường tròn (O) tại T. Gọi M là giao điểm của đường tròn ngoại tiếp tam giác TEB và EF (M # E); N là giao điểm của đường tròn ngoại tiếp tam giác TFC và EF (N # F). Chứng minh rằng đường tròn ngoại tiếp tam giác TMN luôn đi qua một điểm cố định. + Cho bàn cờ 9 x 9 như hình vẽ bên. Có bao nhiêu cách xếp 8 quân xe vào bàn cờ sao cho cả 8 quân xe đều nằm trên các ô cùng màu và không có hai quân xe nào nằm cùng hàng hoặc cùng cột. + Cho số nguyên tố p và số nguyên n > 1 thỏa mãn: p – 1 chia hết cho n và n3 – 1 chia hết cho p. Chứng minh 4p – 3 là số chính phương.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 THPT học 2017 - 2018 sở GD và ĐT Thừa Thiên Huế
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 THPT học 2017 – 2018 sở GD và ĐT Thừa Thiên Huế gồm 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết .
Đề thi thử HSG Toán 12 THPT năm học 2017 - 2018 trường THPT Bình Xuyên - Vĩnh Phúc
Đề thi thử HSG Toán 12 THPT năm học 2017 – 2018 trường THPT Bình Xuyên – Vĩnh Phúc gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Trong mặt phẳng với hệ trục tọa độ vuông góc Oxy, cho đường tròn (C) và đường thẳng (d) lần lượt có phương trình (x – 2)^2 + (y + 1)^2 = 8 và x – 2y + 3 = 0. Cho hình thoi ABCD ngoại tiếp đường tròn (C) và điểm A thuộc đường thẳng (d). Hãy tìm tọa độ các đỉnh A, B, C, D biết rằng BD = 2AC và tung độ của điểm A không nhỏ hơn 2. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình vuông và tam giác SAB là tam giác cân tại đỉnh S. Góc giữa đường thẳng SAvà mặt phẳng đáy bằng 45 độ, góc giữa mặt phẳng (SAB) và mặt phẳng đáy bằng 60 độ. Tính thể tích khối chóp S.ABCD biết rằng khoảng cách giữa hai đường thẳng CD và SA bằng a√6. + Cho hàm số y = (x – 2)/(x – 1) có đồ thị (C). Hãy lập phương trình đường thẳng (d) đi qua điểm M (3; -1) và cắt đồ thị (C) tại hai điểm phân biệt A, B sao cho MB = 3.MA.
Đề thi chọn học sinh giỏi vòng trường môn Toán trường THPT Chu Văn An - Gia Lai
Đề thi chọn học sinh giỏi vòng trường môn Toán trường THPT Chu Văn An – Gia Lai gồm 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi : + Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC cân tại A, có đỉnh A(-1; 4) và các điểm B, C thuộc đường thẳng Δ: x – y – 4 = 0. Xác định tọa độ điểm B và C, biết diện tích tam giác ABC bằng 18. [ads] + Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật có AB = a, BC = b, SA = SB = SC = SD = c. K là hình chiếu vuông góc của P xuống AC. a/ Tính độ dài đoạn vuông góc chung của SA và BK. b/ Gọi M, N lần lượt là trung điểm của đoạn thẳng AK và CD. Chứng minh: Các đường thẳng BM và MN vuông góc nhau. + Cho tập A = {1; 2; 3; 4; 5; 6; 7; 8; 9}. Lập ngẫu nhiên một số có 3 chữ số khác nhau với các chữ số chọn từ tập A. Tính xác suất để số lập được chia hết cho 6.
Đề thi chọn HSG tỉnh Toán 12 năm học 2017 - 2018 sở GD và ĐT Hải Dương
Đề thi chọn HSG tỉnh Toán 12 năm học 2017 – 2018 sở GD và ĐT Hải Dương gồm 5 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi : + Môn bóng đá nam SEA GAME có 10 đội bóng tham dự trong đó có Việt Nam và Thái Lan. Chia 10 đội bóng này thành 2 bảng A, B. Mỗi bảng có 5 đội. Tính xác suất sao cho Việt Nam và Thái Lan ở cùng một bảng. [ads] + Cho tứ diện ABCD có AB = CD = c, AC = BD = b, AD = BC = a. a. Tính góc giữa hai đường thẳng AB, CD b. Chứng minh rằng trọng tâm của tứ diện ABCD cách đều tất cả các mặt của tứ diện + Cho hình chóp S.ABCD có SA = x, tất cả các cạnh còn lại có độ dài bằng 1. Tính thể tích khối chóp đó theo x và tìm x để thể tích đó là lớn nhất.