Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giữa học kì 1 Toán 8 năm 2022 - 2023 trường Lê Thánh Tông - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra đánh giá giữa học kì 1 môn Toán 8 năm học 2022 – 2023 trường TH – THCS – THPT Lê Thánh Tông, thành phố Hồ Chí Minh; kỳ thi được diễn ra vào ngày 15 tháng 10 năm 2022. Trích dẫn Đề giữa học kì 1 Toán 8 năm 2022 – 2023 trường Lê Thánh Tông – TP HCM : + Tính giá trị của biểu thức. + Một cửa hàng thời trang có chương trình giảm giá 20% cho tất cả các sản phẩm. Đặc biệt nếu khách hàng nào có thẻ khách hàng thân thiết của cửa hàng thì được giảm giá thêm 10% trên giá đã giảm. a) Chị Nga là khách hàng thân thiết của cửa hàng, chị đã đến cửa hàng mua một chiếc váy có giá niêm yết 800 ngàn đồng. Hỏi chị Nga phải trả bao nhiêu tiền cho chiếc váy đó? b) Ông Đồ cũng là một khách hàng thân thiết của cửa hàng, ông đã mua một chiếc va li và đã phải trả số tiền là 864 ngàn đồng. Hỏi giá ban đầu của chiếc va li đó là bao nhiêu? + Cho tam giác ABC vuông cân tại A. Lấy điểm M bất kỳ thuộc cạnh BC (M khác B và C). Gọi E và F lần lượt là hình chiếu của M trên AB và AC. a) Chứng minh AM = EF. b) Gọi I, K lần lượt là trung điểm của MB, MC. Chứng minh tứ giác EIKF là hình thang vuông. c) Một con rô bốt thu gom rác xuất phát từ vị trí A di chuyển dọc theo các cạnh của tứ giác AEMF một lượt rồi trở về A. Chứng minh rằng độ dài quãng đường con rô bốt di chuyển không phụ thuộc vào vị trí của điểm M trên cạnh BC. Tính quãng đường đó biết độ dài cạnh BC = 20 mét.

Nguồn: toanmath.com

Đọc Sách

Đề thi giữa học kì 1 Toán 8 năm 2020 - 2021 trường THCS Đông Sơn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi giữa học kì 1 Toán 8 năm 2020 – 2021 trường THCS Đông Sơn – Hà Nội; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa học kì 1 Toán 8 năm 2020 – 2021 trường THCS Đông Sơn – Hà Nội : + Cho tam giác ABC cân tại A. Gọi M N lần lượt là trung điểm của AB và AC. a) Tính MN biết BC = 7 cm. b) Chứng minh rằng tứ giác MNCB là hình thang cân. c) Kẻ MI vuông góc với BN tại I và CK vuông góc với BN tại K K BN Chứng minh rằng CK MI d) Kẻ BD vuông góc với MC tại D. Chứng minh rằng DK // BC. + Tìm giá trị lớn nhất của biểu thức: 2 A xx. + Phân tích đa thức thành nhân tử.
Đề thi giữa học kì 1 Toán 8 năm 2020 - 2021 trường THCS Lê Quý Đôn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi giữa học kì 1 Toán 8 năm 2020 – 2021 trường THCS Lê Quý Đôn – Hà Nội; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa học kì 1 Toán 8 năm 2020 – 2021 trường THCS Lê Quý Đôn – Hà Nội : + Cho hình bình hành ABCD có AB > BC. Đường phân giác của góc D cắt AB tại M, đường phân giác của góc B cắt CD tại N. a/ Chứng minh AM = CN b/ Chứng minh tứ giác DMBN là hình bình hành. + Tìm đa thức thương và đa thức dư trong phép chia đa thức A x cho B x. + Để 2 4 12 y y trở thành một hằng đẳng thức. Giá trị trong ô vuông là?
Đề thi giữa học kì 1 Toán 8 năm 2020 - 2021 trường THCS Mỹ Đình 1 - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi giữa học kì 1 Toán 8 năm 2020 – 2021 trường THCS Mỹ Đình 1 – Hà Nội; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa học kì 1 Toán 8 năm 2020 – 2021 trường THCS Mỹ Đình 1 – Hà Nội : + Một tứ giác có nhiều nhất là: A. 4 góc vuông. B. 3 góc vuông. C. 2 góc vuông. D. 1 góc vuông. + Một hình thang cân là hình thang có: A. Hai đáy bằng nhau. B. Hai cạnh bên bằng nhau. C. Hai đường chéo bằng nhau. D. Hai cạnh bên song song. + Một hình thang có đáy lớn dài 6 cm,đáy nhỏ dài 4 cm. Độ dài đường trung bình của hình thang đó là: A. 10cm. B. 5 cm. C. 10 cm. D. 5 cm.
Đề thi giữa kỳ 1 Toán 8 năm 2020 - 2021 trường THCS Tam Hồng - Vĩnh Phúc
Đề thi giữa kỳ 1 Toán 8 năm 2020 – 2021 trường THCS Tam Hồng – Vĩnh Phúc gồm 04 câu trắc nghiệm và 05 câu tự luận, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án trắc nghiệm + lời giải chi tiết tự luận. Trích dẫn đề thi giữa kỳ 1 Toán 8 năm 2020 – 2021 trường THCS Tam Hồng – Vĩnh Phúc : + Cho ∆𝐴𝐵𝐶 vuông tại C (AC < BC), I là trung điểm của AB. Kẻ IE BC tại E, IF AC tại F. a) Chứng minh tứ giác CEIF là hình chữ nhật. b) Gọi H là điểm đối xứng của I qua F. Chứng minh tứ giác CHFE là hình bình hành. c) CI cắt BF tại G, O là trung điểm của FI. Chứng minh 3 điểm A, O, G thẳng hàng. + Một hình thang có độ dài hai đáy là 6cm và 10cm. Độ dài đường trung bình của hình thang đó là? + Tìm giá trị nhỏ nhất của biểu thức P = (x – 1)(x + 2)(x + 3)(x + 6).