Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán tuyển sinh lớp 10 năm 2019 - 2020 sở GDĐT Bắc Ninh

THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề Toán tuyển sinh lớp 10 năm 2019 – 2020 sở GD&ĐT Bắc Ninh, kỳ thi nhằm tuyển chọn các em học sinh đáp ứng điều kiện về học lực vào học tại các trường THPT trên địa bàn tỉnh Bắc Ninh, đề thi được biên soạn theo dạng kết hợp trắc nghiệm và tự luận, phần trắc nghiệm gồm 6 câu, phần tự luận gồm 4 câu, thời gian làm bài 120 phút. Trích dẫn đề Toán tuyển sinh lớp 10 năm 2019 – 2020 sở GD&ĐT Bắc Ninh : + Cho đường tròn (O), hai điểm A, B nằm trên (O) sao cho góc AOB = 90°. Điểm C nằm trên cung lớn AB sao cho AC > BC và tam giác ABC có ba góc đều nhọn. Các đường cao AI, BK của tam giác ABC cắt nhau tại điểm H. BK cắt (O) tại điểm N (khác điểm B); AI cắt (O) tại điểm M (khác điểm A); NA cắt MB tại điểm D. Chứng minh rằng: a) Tứ giác CIHK nội tiếp một đường tròn. b) MN là đường kính của đường tròn (O). c) OC song song với DH. [ads] + Cho phương trình x^2 – 2mx – 2m – 1 = 0 (1) với m là tham số. Tìm m để phương trình (1) có hai nghiệm phân biệt x1, x2 sao cho √(x1 + x2) + √(3 + x1x2) = 2m + 1. + Cho hai số thực không âm a, b thỏa mãn a^2 + b^2 = 2. Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức M = (a^3 + b^3 + 4)/(ab + 1).

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Quảng Bình
Nội dung Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Quảng Bình Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2021 – 2022 sở GD&ĐT Quảng Bình Đề tuyển sinh môn Toán năm 2021 – 2022 sở GD&ĐT Quảng Bình Sytu mang đến cho quý thầy cô và các em học sinh đáp án, lời giải chi tiết và hướng dẫn chấm điểm đề tuyển sinh lớp 10 môn Toán năm học 2021 – 2022 sở GD&ĐT Quảng Bình; kỳ thi diễn ra vào ngày 08 tháng 06 năm 2021. Một số câu hỏi trong đề tuyển sinh: 1. Đường tròn O có đường kính AB, dây cung MN vuông góc với AB tại điểm I sao cho AI = BI. Trên đoạn thẳng MI lấy điểm H (H khác M và I), tia AH cắt đường tròn O tại điểm thứ hai là K. Chứng minh rằng: a) Tứ giác BIHK nội tiếp đường tròn. b) AHM đồng dạng với AMK. c) 2AH.AK = BI.AB. 2. Giải phương trình 2x^2 + (m-6)x + 4 = 0 (với m là tham số). a) Tìm nghiệm của phương trình khi m = 1. b) Tìm tất cả các giá trị của m để phương trình có hai nghiệm thỏa điều kiện. 3. Chứng minh rằng: 1/(a+15) + 1/(b+15) ≥ 4. Nếu bạn quan tâm và muốn đạt kết quả cao trong kỳ thi tuyển sinh, hãy tham gia luyện đề và ôn tập theo hướng dẫn của Sytu để sẵn sàng đối mặt với bài thi Toán sở GD&ĐT Quảng Bình.
Đề tuyển sinh môn Toán (không chuyên) năm 2021 2022 trường PTNK TP HCM
Nội dung Đề tuyển sinh môn Toán (không chuyên) năm 2021 2022 trường PTNK TP HCM Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (không chuyên) năm 2021-2022 trường PTNK TP HCM Đề tuyển sinh môn Toán (không chuyên) năm 2021-2022 trường PTNK TP HCM Ở đây, Sytu muốn đem đến cho các thầy cô giáo và các em học sinh lời giải chi tiết và hướng dẫn chấm điểm đề tuyển sinh lớp 10 môn Toán (không chuyên) năm học 2021 - 2022 trường Phổ thông Năng khiếu, Đại học Quốc gia thành phố Hồ Chí Minh. Ví dụ về một số câu hỏi trong đề tuyển sinh: Gọi (P), (d) lần lượt là đồ thị của hàm số y = x^2 và y = 2x + m. Tìm m sao cho (P) cắt (d) tại hai điểm phân biệt A(x1;y1); B(x2;y2). Công ty viễn thông X có hai gói cước gọi điện hàng tháng được tính như sau. Bác An chọn gói cước II vì so với gói cước I, bác An sẽ tiết kiệm được 95.000 đồng. Hỏi một tháng trung bình bác An gọi bao nhiêu phút? Tam giác ABC có AB = 3cm, AC = 4cm và BC = 5cm. Vẽ phân giác BD của góc ABC (D thuộc cạnh AC). Tính độ dài BD. Đề tuyển sinh môn Toán không chuyên năm 2021-2022 trường PTNK TP HCM dành cho các em học sinh muốn thử sức và khẳng định năng lực của mình. Hy vọng rằng thông tin này sẽ hữu ích cho bạn trong quá trình ôn tập và chuẩn bị cho kỳ thi sắp tới. Chúc các em thành công!
Đề tuyển sinh chuyên môn Toán năm 2021 trường ĐHSP Hà Nội
Nội dung Đề tuyển sinh chuyên môn Toán năm 2021 trường ĐHSP Hà Nội Bản PDF - Nội dung bài viết Đề tuyển sinh chuyên môn Toán năm 2021 trường ĐHSP Hà Nội Đề tuyển sinh chuyên môn Toán năm 2021 trường ĐHSP Hà Nội Chúng tôi xin giới thiệu đến quý thầy cô và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 của trường ĐHSP Hà Nội. Đề thi này đã được biên soạn với đầy đủ đáp án và lời giải chi tiết để giúp các em ôn tập hiệu quả. Trích đoạn đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 trường ĐHSP Hà Nội: + Một tấm biển quảng cáo có dạng hình tròn tâm O, bán kính bằng 1,6m. Hình chữ nhật ABCD nội tiếp đường tròn tâm O bán kính bằng 1,6m sao cho BOC là góc 45 độ. Người ta cần sơn màu toàn bộ tấm biển quảng cáo và chỉ sơn một mặt như hình vẽ. Thông tin chi phí sơn được cung cấp như sau: mức chi phí sơn phần hình tô đậm là 150 nghìn đồng/ 2m và phần còn lại là 200 nghìn đồng/ 2m. Hỏi số tiền để sơn toàn bộ biển quảng cáo là bao nhiêu (làm tròn đến đơn vị nghìn đồng)? Biết rằng pi = 3,14. + Cho ba điểm A, B, C cố định sao cho A, B, C thẳng hàng với B nằm giữa A và C. Đường thẳng d đi qua C và vuông góc với AB. Lấy điểm M tùy ý trên d. Đường thẳng đi qua B và vuông góc với AM cắt các đường thẳng AM, d lần lượt tại I, N. Đường thẳng MB cắt AN tại K. Cần chứng minh các phần sau: a) Tứ giác MIKN là nội tiếp. b) CM bằng CN, AC bằng BC. c) Tâm của đường tròn ngoại tiếp tam giác AMN là O. Vẽ hình bình hành MBNE. Gọi H là trung điểm của BE. Chứng minh rằng OH vuông góc với đường thẳng d và OH bằng một nửa AB. + Cho a và b là hai số hữu tỉ. Hãy chứng minh rằng nếu a/b = 2/3 là số hữu tỉ, thì a/b = 0.
Đề tuyển sinh vào môn Toán năm 2021 2022 sở GD ĐT Bắc Kạn
Nội dung Đề tuyển sinh vào môn Toán năm 2021 2022 sở GD ĐT Bắc Kạn Bản PDF - Nội dung bài viết Đề tuyển sinh vào môn Toán năm 2021 2022 sở GD ĐT Bắc Kạn Đề tuyển sinh vào môn Toán năm 2021 2022 sở GD ĐT Bắc Kạn Chúng tôi xin gửi đến quý thầy cô và các em học sinh đề tuyển sinh vào lớp 10 môn Toán năm 2021 - 2022 của sở GD&ĐT Bắc Kạn. Kỳ thi được tổ chức vào ngày 17 tháng 06 năm 2021. Hy vọng rằng đề thi sẽ đem lại cơ hội cho các em thí sinh thể hiện bản lĩnh và kiến thức của mình.