Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 (HK2) lớp 12 môn Toán năm học 2018 2019 sở GD ĐT Đà Nẵng

Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm học 2018 2019 sở GD ĐT Đà Nẵng Bản PDF Thứ Ba ngày 23 tháng 04 năm 2019, sở Giáo dục và Đào tạo thành phố Đà Nẵng tổ chức kỳ thi học kỳ 2 môn Toán lớp 12 năm học 2018 – 2019, kỳ thi nhằm đánh giá toàn diện các kiến thức Toán lớp 12 thuộc chương trình HK2 mà học sinh đã được học, đồng thời cũng đánh dấu kết thúc chương trình Toán lớp 12. Đề thi học kỳ 2 Toán lớp 12 năm học 2018 – 2019 sở GD&ĐT Đà Nẵng có mã đề 168, đề gồm 04 trang với 50 câu trắc nghiệm, các bài toán thuộc các chủ đề: nguyên hàm – tích phân và ứng dụng, số phức, hình học giải tích Oxyz và một số bài toán liên quan. [ads] Trích dẫn đề thi học kỳ 2 Toán lớp 12 năm học 2018 – 2019 sở GD&ĐT Đà Nẵng : + Gọi D là hình phẳng giới hạn bởi đồ thị hàm số y = xlnx, trục hoành và đường thẳng x = e. Thể tích khối tròn xoay được tạo thành khi quay D quanh trục hoành được viết dưới dạng pi/a(be^3 – 2), với a và b là các số nguyên. Tính giá trị biểu thức T = a – b^2. + Trong không gian Oxyz, cho bốn điểm A(0;1;-1), B(1;1;2), C(1;-1;0) và D(0;0;1). Mặt phẳng (a) song song với mặt phẳng (BCD) và chia khối tứ diện ABCD thành hai khối đa diện sao cho tỉ số thể tích của khối đa diện có chứa điểm A và khối tứ diện ABCD bằng 2. Viết phương trình mặt phẳng (a). + Trong không gian Oxyz, cho mặt cầu (S) có tâm I(1;2;1) và cắt mặt phẳng (P): 2x – y + 2z + 1 = 0 theo một đường tròn có đường kính bằng 8. Phương trình mặt cầu (S) là?

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Trưng Vương TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Trưng Vương TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán lớp 12 năm học 2019 – 2020 trường THPT Trưng Vương, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 12 năm 2019 – 2020 trường THPT Trưng Vương – TP HCM : + Trong không gian Oxyz, cho hai điểm A M và đường thẳng. Gọi u a b là một vectơ chỉ phương của trình đường thẳng đi qua M vuông góc với đường thẳng d sao cho khoảng cách từ A đến đường thẳng là nhỏ nhất. Tính 2 2 a b. + Trên mặt phẳng toạ độ Oxy, gọi A B C lần lượt là điểm biểu diễn các số phức z iz và z iz. Biết tam giác ABC có diện tích bằng 8. Tính môđun của số phức z. + Trong không gian Oxyz, mặt cầu S có tâm nằm trên mặt phẳng và tiếp xúc với mặt phẳng Oxy tại điểm H(-1;1;0). Tính bán kính R của mặt cầu.
Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Trường Chinh TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Trường Chinh TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán lớp 12 năm học 2019 – 2020 trường THPT Trường Chinh, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 12 năm 2019 – 2020 trường THPT Trường Chinh – TP HCM : + Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng x = 1 và x = 3 , biết rằng khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x thì được thiết diện là một hình thoi có độ dài hai đường chéo là 6x và 2 3 2 x. + Cho (H) là hình phẳng giới hạn bởi đường cong y x và nửa đường tròn có phương trình (phần tô đậm trong hình vẽ). Diện tích của (H) bằng? + Trong không gian Oxyz, cho ba điểm. Tìm m n để A B C thẳng hàng.
Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Võ Văn Kiệt TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Võ Văn Kiệt TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán lớp 12 năm học 2019 – 2020 trường THPT Võ Văn Kiệt, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 12 năm 2019 – 2020 trường THPT Võ Văn Kiệt – TP HCM : + Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;0;2),  B(3;1;-2) và mặt phẳng (P) có phương trình x y z 1 0. Hãy tìm điểm M a b c thuộc mặt phẳng (P) sao cho 3 2 MA MB đạt giá trị nhỏ nhất. + Điểm biểu diễn số phức: Cho A, B, C, D lần lượt là các điểm biểu diễn của các số phức 1 2 3 4 z 2 z 3 i z 2 2i z 1 i. Chọn kết luận đúng nhất: A. ABCD là chữ nhật B. ABCD là hình vuông. C. ABCD là hình bình hành D. ABCD là hình thoi. + Số nghiệm của phương trình 2 z z 2 0 trên tập số phức là?