Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HKI lớp 11 môn Toán năm 2018 2019 trường Lương Ngọc Quyến Thái Nguyên

Nội dung Đề thi HKI lớp 11 môn Toán năm 2018 2019 trường Lương Ngọc Quyến Thái Nguyên Bản PDF Sytu giới thiệu đến bạn đọc nội dung đề thi HKI Toán lớp 11 năm học 2018 – 2019 trường THPT Lương Ngọc Quyến – Thái Nguyên, đề có mã đề 102 được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, trong đó phần trắc nghiệm gồm 30 câu, chiếm 60% tổng số điểm, phần tự luận gồm 3 câu, chiếm 40% tổng số điểm, thông qua kỳ thi này, giáo viên bộ môn Toán và nhà trường sẽ đánh giá được toàn diện chất lượng học tập môn Toán của học sinh khối lớp 11 trong giai đoạn vừa qua của năm học, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HKI Toán lớp 11 năm học 2018 – 2019 trường THPT Lương Ngọc Quyến – Thái Nguyên : + Khẳng định nào sau đây sai? A. Phép tịnh tiến biến đoạn thẳng thành đoạn thẳng bằng nó. B. Phép quay biến đường thẳng thành đường thẳng song song hoặc trùng với nó. C. Phép tịnh tiến biến tam giác thành tam giác bằng nó. D. Phép quay biến đường tròn thành đường tròn có cùng bán kính. + Cho đa giác đều 12 đỉnh nội tiếp đường tròn tâm O. Chọn ngẫu nhiên 3 đỉnh của đa giác đó. Tính xác suất để 3 đỉnh được chọn tạo thành tam giác không có cạnh nào là cạnh của đa giác đã cho. [ads] + Cho tứ diện ABCD. Gọi M là trung điểm cạnh AB, N thuộc cạnh AC sao cho AN = 2NC, P thuộc cạnh BD sao cho BP = 3PD. a) Xác định giao tuyến của hai mặt phẳng (MNP) và (BCD). b) Xác định giao điểm I của đường thẳng CD và mặt phẳng (MNP); giao điểm J của đường thẳng AD và mặt phẳng (MNP). Từ đó suy ra ba điểm N, I, J thẳng hàng. c) Giả sử điểm P di động trên cạnh BD. Gọi K là giao điểm của MI và NP. Chứng minh K thuộc một đường thẳng cố định. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi HK1 Toán 11 năm học 2017 - 2018 sở GD và ĐT Bắc Giang
Đề thi HK1 Toán 11 năm học 2017 – 2018 sở GD và ĐT Bắc Giang gồm 3 trang với 25 câu hỏi trắc nghiệm và 3 bài toán tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi HK1 Toán 11 : + Cho hình chóp S.ABCD có đáy là hình thang ABCD (AD // BC). Gọi M là trung điểm CD. Giao tuyến của hai mặt phẳng (MSB) và (SAC) là: A. SO (O là giao điểm của AC và BD). B. SJ (J là giao điểm của AM và BD). C. SI (I là giao điểm của AC và BM). D. SP (P là giao điểm của AB và CD). [ads] + Trong mặt phẳng, có bao nhiêu hình chữ nhật được tạo thành từ sáu đường thẳng đôi một song song với nhau và năm đường thẳng phân biệt cùng vuông góc với sáu đường thẳng song song đó? + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J, E, F lần lượt là trung điểm SA, SB, SC, SD. Trong các đường thẳng sau, đường thẳng nào không song song với IJ?
Đề thi học kỳ 1 Toán 11 năm học 2017 - 2018 trường THPT Nguyễn Trường Tộ - TT Huế
Đề thi học kỳ 1 Toán 11 năm học 2017 – 2018 trường THPT Nguyễn Trường Tộ – TT Huế gồm 6 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết . Bạn đọc có thể tham khảo thêm các đề thi học kỳ 11 toán 11 tại đây.
Đề thi học kỳ I Toán 11 năm học 2017 - 2018 trường THPT Nguyễn Sỹ Sách - Nghệ An
Đề thi học kỳ I Toán 11 năm học 2017 – 2018 trường THPT Nguyễn Sỹ Sách – Nghệ An gồm 30 câu hỏi trắc nghiệm và 3 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án . Trích dẫn đề thi học kỳ I Toán 11 : + Cho hình chóp S.ABC; gọi P là trung điểm của đoạn thẳng SA; điểm Q thuộc đoạn thẳng SC sao cho SQ = 2QC. a) Tìm giao điểm của đường thẳng PQ và mặt phẳng (ABC). b) Tìm giao tuyến của hai mặt phẳng (BPQ) và (ABC). + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành; gọi O là giao điểm của hai đường chéo AC và BD; hãy chọn khẳng định sai. A. Hai mặt phẳng (SAB) và (ABCD) có giao tuyến là đường thẳng AB. B. Đường thẳng AB song song với mặt phẳng (SAC). C. Đường thẳng SO cắt mặt phẳng (ABCD) tại điểm O. D. Giao tuyến của hai mặt phẳng (SAC) và (SBD) là đường thẳng SO. [ads] + Cho hình chóp S.ABC; gọi M; N lần lượt là trung điểm của các đoạn thẳng SA; SB; gọi P là điểm thuộc đoạn thẳng SC sao cho SP = 2 PC; hãy chọn khẳng định sai. A. Đường thẳng MP và mặt phẳng (ABC) cắt nhau. B. Giao tuyến của hai mặt phẳng (MNP) và (SAB) là đường thẳng MN. C. Thiết diện của hình chóp S.ABC khi cắt bởi mặt phẳng (MNP) là tam giác BMP. D. Đường thẳng MN và mặt phẳng (ABC) song song với nhau.
Đề thi học kỳ 1 Toán 11 năm học 2017 - 2018 trường THPT Thạch Thành 1 - Thanh Hóa
Đề thi học kỳ 1 Toán 11 năm học 2017 – 2018 trường THPT Thạch Thành 1 – Thanh Hóa gồm 4 bài toán tự luận và 20 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi học kỳ 1 Toán 11 : + Cho tứ diện đều ABCD cạnh 2a. Gọi M , N lần lượt là trung điểm các cạnh AC, BC; P là trọng tâm tam giác BCD. a) Xác định giao tuyến của mặt phẳng (MNP) với mặt phẳng (BCD) b) Tính diện tích thiết diện của tứ diện cắt bởi mặt phẳng (MNP) + Xét trên tập xác định thì: A. hàm số lượng giác có tập giá trị là [-1; 1] B. hàm số y = cosx có tập giá trị là [-1; 1] C. hàm số y = tanx có tập giá trị là [-1; 1] D. hàm số y = cotx có tập giá trị là [-1; 1] [ads] + Khẳng định nào sau đây là đúng về phép tịnh tiến? A. Phép tịnh tiến theo véctơ v biến điểm M thành điểm M’ thì véctơ v = MM’ B. Phép tịnh tiến là phép đồng nhất nếu véctơ tịnh tiến v = 0 C. Nếu phép tịnh tiến theo véctơ v biến 2 điểm M, N thành hai điểm M’, N’ thì MNN’M’ là hình bình hành D. Phép tịnh tiến biến một đường tròn thành một elip