Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HKI lớp 11 môn Toán năm 2018 2019 trường Lương Ngọc Quyến Thái Nguyên

Nội dung Đề thi HKI lớp 11 môn Toán năm 2018 2019 trường Lương Ngọc Quyến Thái Nguyên Bản PDF Sytu giới thiệu đến bạn đọc nội dung đề thi HKI Toán lớp 11 năm học 2018 – 2019 trường THPT Lương Ngọc Quyến – Thái Nguyên, đề có mã đề 102 được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, trong đó phần trắc nghiệm gồm 30 câu, chiếm 60% tổng số điểm, phần tự luận gồm 3 câu, chiếm 40% tổng số điểm, thông qua kỳ thi này, giáo viên bộ môn Toán và nhà trường sẽ đánh giá được toàn diện chất lượng học tập môn Toán của học sinh khối lớp 11 trong giai đoạn vừa qua của năm học, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HKI Toán lớp 11 năm học 2018 – 2019 trường THPT Lương Ngọc Quyến – Thái Nguyên : + Khẳng định nào sau đây sai? A. Phép tịnh tiến biến đoạn thẳng thành đoạn thẳng bằng nó. B. Phép quay biến đường thẳng thành đường thẳng song song hoặc trùng với nó. C. Phép tịnh tiến biến tam giác thành tam giác bằng nó. D. Phép quay biến đường tròn thành đường tròn có cùng bán kính. + Cho đa giác đều 12 đỉnh nội tiếp đường tròn tâm O. Chọn ngẫu nhiên 3 đỉnh của đa giác đó. Tính xác suất để 3 đỉnh được chọn tạo thành tam giác không có cạnh nào là cạnh của đa giác đã cho. [ads] + Cho tứ diện ABCD. Gọi M là trung điểm cạnh AB, N thuộc cạnh AC sao cho AN = 2NC, P thuộc cạnh BD sao cho BP = 3PD. a) Xác định giao tuyến của hai mặt phẳng (MNP) và (BCD). b) Xác định giao điểm I của đường thẳng CD và mặt phẳng (MNP); giao điểm J của đường thẳng AD và mặt phẳng (MNP). Từ đó suy ra ba điểm N, I, J thẳng hàng. c) Giả sử điểm P di động trên cạnh BD. Gọi K là giao điểm của MI và NP. Chứng minh K thuộc một đường thẳng cố định. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra học kỳ 1 Toán 11 năm học 2017 - 2018 trường THPT chuyên Hà Nội - Amsterdam
Đề kiểm tra học kỳ 1 Toán 11 năm học 2017 – 2018 trường THPT chuyên Hà Nội – Amsterdam gồm 16 câu hỏi trắc nghiệm và 4 bài toán tự luận, thời gian làm bài 120 phút. Đây là đề thi của trường chuyên nên đề có chất lượng rất tốt, rất phù hợp để ôn tập và thử sức trước kỳ thi HK1 Toán 11, có đáp án và lời giải chi tiết .
Kiểm tra học kỳ 1 Toán 11 năm học 2017 - 2018 trường THPT Phước Vĩnh - Bình Dương
Kiểm tra học kỳ 1 Toán 11 năm học 2017 – 2018 trường THPT Phước Vĩnh – Bình Dương gồm 25 câu hỏi trắc nghiệm và 5 bài toán tự luận, thời gian làm bài 90 phút, có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Cho tam giác ABC có trọng tâm G. Chọn phát biểu đúng về phép tịnh tiến -vtAG A. Biến điểm A thành điểm G B. Biến điểm G thành điểm A C. Biến điểm G thành trung điểm của đoạn BC D. Biến trung điểm của đoạn BC thành điểm G + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AD và SB. a) Chứng minh đường thẳng MN song song với mặt phẳng (SBD). b) Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng (MNP). [ads] + Tìm mệnh đề sai? A. Đường thẳng d được gọi là song song với mp(α) nếu d không nằm trong mp(α) và d song song với một đường thẳng nằm trong (α) B. Nếu đường thẳng d song song với mp(α) thì trong (α) tồn tại vô số đường thẳng song song với d C. Đường thẳng d được gọi là song song với mp(α) nếu d song song với mọi đường thẳng nằm trong (α) D. Đường thẳng d được gọi là cắt mp(α) nếu d có một điểm chung duy nhất với (α)
Đề kiểm tra định kỳ lần 1 Toán 11 năm học 2017 - 2018 sở GD và ĐT Bắc Ninh
Đề kiểm tra định kỳ lần 1 Toán 11 năm học 2017 – 2018 sở GD và ĐT Bắc Ninh gồm 5 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi HK1 Toán 11 : + Cho hình chóp S.ABCD có đáy ABCD là hình thang, AB song song với CD, AB > CD. Gọi E là trung điểm của SA, H thuộc cạnh AB sao cho AH = CD. 1. Tìm giao tuyến của hai mặt phẳng (SHC) và (SAB). 2. Chứng minh HC song song với mặt phẳng (SAD) 3. Xác định thiết diện của hình chóp khi cắt bởi (CDE). Thiết diện là hình gì? Tìm điều kiện của hình thang ABCD để thiết diện là hình bình hành. [ads] + Một trường THPT tổ chức trao thưởng cho học sinh nghèo học giỏi, nhà trường chuẩn bị các phần thưởng là: 7 cuốn sổ, 8 cặp sách và 9 hộp bút (các sản phẩm cùng loại là giống nhau). Nhà trường chọn 12 bạn học sinh để trao phần thưởng sao cho mỗi học sinh đều nhận được 2 phần thưởng khác loại. Trong số đó có hai bạn Hòa và Bình. Tính xác suất để hai bạn Hòa và Bình nhận được phần thưởng giống nhau. + Tìm hệ số của x^9 trong khai triển (2x^2 – 1/x)^12 với x ≠ 0.
Đề kiểm tra học kỳ 1 Toán 11 năm học 2017 - 2018 trường THPT Đan Phượng - Hà Nội
Đề kiểm tra học kỳ 1 Toán 11 năm học 2017 – 2018 trường THPT Đan Phượng – Hà Nội gồm 4 mã đề, mỗi mã đề gồm 15 câu hỏi trắc nghiệm và 5 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Trong mặt phẳng Oxy cho đường tròn (C) có phương trình (x – 2)^2 + (y – 2)^2 = 4. Hỏi phép đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm O tỉ số k = 1/2 và phép quay tâm O góc quay 90° sẽ biến (C) thành các đường tròn nào trong các đường tròn sau: A. (x – 1)^2 + (y – 1)^2 = 1 B. (x + 1)^2 + (y – 1)^2 = 4 C. (x + 2)^2 + (y – 1)^2 = 1 D. (x – 2)^2 + (y – 2)^2 = 1 [ads] + Cho chóp S.ABCD đáy là hình thang (đáy lớn AB, đáy nhỏ CD). Gọi I, K lần lượt là trung điểm của AD, BC. G là trọng tâm tam giác SAB a) Tìm (IKG) ∩ (SAB) b) Tìm thiết diện của hình chóp với (IKG) c) Tìm điều kiện đối với AB và CD để thiết diện là hình bình hành + Trong các mệnh đề sau mệnh đề nào đúng? A. Hai đường thẳng chéo nhau thì không có điểm chung B. Hai đường thẳng không cắt nhau và không song song thì chéo nhau C. Hai đường thẳng không song song thì chéo nhau D. Hai đường thẳng không có điểm chung thì chéo nhau