Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng bài tập tự luận và trắc nghiệm Toán 12 học kì 1

Tài liệu gồm 151 trang, được biên soạn bởi tập thể quý thầy, cô giáo nhóm Pi Latex, tuyển tập các dạng bài tập tự luận và trắc nghiệm Toán 12 học kì 1. Mục lục : A GIẢI TÍCH 3. Chương 1 KHẢO SÁT & VẼ ĐỒ THỊ HÀM SỐ 5. Vấn đề 1 SỰ ĐỒNG BIẾN VÀ NGHỊCH BIẾN 6. Dạng 1 Xét tính đơn điệu của hàm số 7. Dạng 2 Tìm tham số để hàm y = (ax + b)/(cx + d) đơn điệu trên từng khoảng xác định 9. Dạng 3 Tìm tham số để hàm bậc ba y = ax3 + bx2 + cx + d đơn điệu trên R 10. Dạng 4 Tìm tham số m để hàm số đơn điệu trên K 11. Dạng 5 Dùng tính đơn điệu chứng minh bất đẳng thức 15. Vấn đề 2 CỰC TRỊ 24. Dạng 1 Tìm cực trị hàm số: cực đại và cực tiểu 25. Dạng 2 Tìm tham số m để hàm bậc ba có cực trị 27. Dạng 3 Tìm tham số m để hàm trùng phương có một hoặc ba cực trị 30. Dạng 4 Tìm tham số m để hàm số đạt cực trị tại điểm 32. Vấn đề 3 GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT 38. Dạng 1 Tìm GTLN, GTNN của hàm số trên đoạn [a; b] 39. Dạng 2 Tìm GTLN, GTNN của hàm số trên khoảng (a; b) 40. Dạng 3 Các bài toán vận dụng cao, toán thực tế min, max 41. Vấn đề 4 TIỆM CẬN 45. Vấn đề 5 KHẢO SÁT VẼ ĐỒ THỊ HÀM SỐ 46. Dạng 1 Các dạng đồ thị hàm số bậc ba y = ax3 + bx2 + cx + d 47. Dạng 2 Các dạng đồ thị của hàm số trùng phương y = ax4 + bx2 + c 48. Dạng 3 Hàm phân thức (ax + b)/(cx + d) 49. Vấn đề 6 PHƯƠNG TRÌNH TIẾP TUYẾN 54. Dạng 1 Cho tiếp điểm y − y0 = f0(x0)·(x − x0) 54. Dạng 2 Cho hệ số góc tiếp tuyến k = f0(x0) 55. Dạng 3 Cho điểm tiếp tuyến đi qua 56. Vấn đề 7 TƯƠNG GIAO ĐỒ THỊ 61. Dạng 1 Tìm giao điểm của 2 đồ thị y = f(x), y = g(x) 61. Dạng 2 Biện luận số nghiệm của phương trình dựa vào đồ thị 62. Dạng 3 (C): y = (ax + b)/(cx + d) cắt (d) tại 2 điểm phân biệt 63. Dạng 4 y = ax3 + bx2 + cx + d cắt (d) tại 3 điểm phân biệt 64. Dạng 5 (C): y = ax3 + bx2 + cx + d cắt trục hoành lập thành một cấp số cộng 65. Dạng 6 Tìm m để hàm trùng phương cắt (d) tại bốn điểm phân biệt 66. Vấn đề 8 ĐIỂM CỐ ĐỊNH CỦA HỌ ĐƯỜNG CONG 67. Vấn đề 9 ĐIỂM CÓ TỌA ĐỘ NGUYÊN CỦA ĐỒ THỊ 68. Vấn đề 10 ĐỒ THỊ HÀM CHỨA GIÁ TRỊ TUYỆT ĐỐI 70. Dạng 1 Trị tuyệt đối toàn phần y = |f(x)| (C0) 70. Dạng 2 Trị tuyệt đối cùa riêng x: y = f(|x|)(C0) 71. Dạng 3 Trị tuyệt đối cục bộ y = |u(x)| · v(x) (C0) 72. Vấn đề 11 TÍNH CHẤT ĐỒ THỊ HÀM F0(X) 73. Dạng 1 Tính đơn điệu của hàm số y = f(x) dựa vào đồ thị y = f0(x) 73. Dạng 2 Cực trị của hàm số y = f(x) dựa vào đồ thị y = f0(x) 74. ÔN TẬP CHƯƠNG I 80. Chương 2 LŨY THỪA, MŨ & LÔGARIT 83. Vấn đề 1 LŨY THỪA 84. Vấn đề 2 LÔGARIT 86. Vấn đề 3 HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LOGARIT 89. Vấn đề 4 PHƯƠNG TRÌNH MŨ 97. Vấn đề 5 PHƯƠNG TRÌNH LOGARIT 98. Vấn đề 6 BẤT PHƯƠNG TRÌNH MŨ 100. Vấn đề 7 BẤT PHƯƠNG TRÌNH LÔGARIT 102. Vấn đề 8 HỆ PHƯƠNG TRÌNH MŨ VÀ LÔGARIT 107. Dạng 1 107. Vấn đề 9 BÀI TOÁN THỰC TẾ 108. Dạng 1 Lãi đơn 108. Dạng 2 Lãi kép 108. Dạng 3 Tiền gửi hàng tháng 108. Dạng 4 Vay vốn trả góp 109. Chương 3 NGUYÊN HÀM, TICH PHÂN & ỨNG DỤNG 111. Chương 4 SỐ PHỨC 113. B HÌNH HỌC 115. Chương 5 KHỐI ĐA DIỆN 117. Vấn đề 1 KHỐI ĐA DIỆN ĐỀU 118. Dạng 1 Khối đa diện lồi 118. Dạng 2 Năm khối đa diện đều 119. Vấn đề 2 KHỐI CHÓP 121. Dạng 1 Hình chóp có cạnh bên vuông góc với đáy 121. Dạng 2 Hình chóp có mặt bên vuông góc với mặt đáy 124. Dạng 3 Hình chóp đa giác đều, hình chóp đều 126. Vấn đề 3 KHỐI LĂNG TRỤ 131. Dạng 1 Lăng trụ đứng, lăng trụ xiên 131. Chương 6 NÓN, TRỤ & CẦU 137. Vấn đề 1 MẶT CẦU 137. Vấn đề 1 MẶT CẦU – KHỐI CẦU 138. Dạng 1 Tìm tâm và bán kính mặt cầu ngoại tiếp hình chóp 140. Dạng 2 Tính diện tích, thể tích mặt cầu 141. Vấn đề 2 MẶT NÓN 143. Vấn đề 3 MẶT TRỤ 147. Chương 7 TỌA ĐỘ TRONG KHÔNG GIAN 151.

Nguồn: toanmath.com

Đọc Sách

Các dạng bài tập số phức điển hình - Lê Bá Bảo, Vũ Ngọc Huyền
Tài liệu gồm 34 trang trình bày phương pháp giải, ví dụ mẫu và bài tập trắc nghiệm các dạng toán số phức điển hình trong chương trình Giải tích 12 chương 4, tài liệu được biên soạn bởi các tác giả Lê Bá Bảo và Vũ Thị Ngọc Huyền. Nội dung tài liệu được chia thành các phần: A. Lý thuyết I. Xây dựng tập hợp số phức và các khái niệm liên quan. II. Các phép toán với số phức. III. Giới thiệu một số tính năng tính toán số phức bằng máy tính Casio. [ads] B. Một số dạng toán về số phức I. Các bài toán liên quan tới khái niệm số phức. II. Dạng toán xác định tập hợp điểm biểu diễn số phức. III. Biểu diễn hình học của số phức quỹ tích phức. C. Bài tập rèn luyện kỹ năng 1. Phần thực, phần ảo của số phức. 2. Biểu diễn hình học của số phức. 3. Các phép toán với số phức, mô đun số phức và số phức liên hợp. 4. Phương trình phức.
Một số cách giải và kiểm tra kết quả bài tập số phức bằng máy tính cầm tay Casio - Trần Thanh Tuyền
Tài liệu gồm 8 trang hướng một số cách giải, kiểm tra kết quả bài tập số phức bằng máy tính cầm tay Casio, tài liệu cũng đưa ra những sai lầm cần tránh khi dùng máy tính cầm tay để giải. Nội dung chính gồm các phần: 1. Tìm số phức – xác định phần thực, phần ảo của số phức + Dạng 1: Không chứa z và liên hợp của z + Dạng 2: Có chứa z và liên hợp của z [ads] 2. Tìm tập hợp điểm biểu diễn số phức + Dạng 1: Chỉ dùng cho các đáp án có dạng là các đồ thị đường thẳng + Dạng 2: Làm được cho tất cả các loại đồ thị đường 3. Giải phương trình trên C + Dạng 1: Căn bậc 2 của số phức + Dạng 2: Phương trình không chứa đơn vị ảo i + Dạng 3: Phương trình chứa đơn vị ảo i
110 bài tập trắc nghiệm số phức - Nguyễn Tấn Phong
Tài liệu gồm 8 trang với phần tóm tắt lý thuyết, công thức tính cơ bản và tuyển chọn 110 bài toán trắc nghiệm số phức. Trích dẫn tài liệu : + Gọi A là điểm biểu diễn của số phức z = 2 + 5i và B là điểm biểu diễn của số phức z’ = -2 + 5i. Tìm mệnh đề đúng trong các mệnh đề sau: A. Hai điểm A và B đối xứng với nhau qua trục hoành B. Hai điểm A và B đối xứng với nhau qua trục tung C. Hai điểm A và B đối xứng với nhau qua gốc toạ độ O D. Hai điểm A và B đối xứng với nhau qua đường thẳng y = x3 [ads] + Gọi A là điểm biểu diễn của số phức z = 3 + 2i và B là điểm biểu diễn của số phức z’ = 2 + 3i. Tìm mệnh đề đúng trong các mệnh đề sau: A. Hai điểm A và B đối xứng với nhau qua trục hoành B. Hai điểm A và B đối xứng với nhau qua trục tung C. Hai điểm A và B đối xứng với nhau qua gốc toạ độ O D. Hai điểm A và B đối xứng với nhau qua đường thẳng y = x + Trong mặt phẳng (Oxy), cho A, B, C là 3 điểm lần lượt biểu diễn các số phức: 3 + 3i, -2 + i, 5 – 2i. Tam giác ABC là tam giác gì? A. Một tam giác cân B. Một tam giác đều C. Một tam giác vuông D. Một tam giác vuông cân
250 bài tập trắc nghiệm số phức chọn lọc - Nguyễn Văn Rin
Tài liệu gồm 27 trang với các bài toán trắc nghiệm số phức chọn lọc từ các đề thi thử THPT Quốc gia môn Toán của các trường THPT và cơ sở GD – ĐT trên toàn quốc. Trích dẫn tài liệu : + (ĐỀ MINH HỌA – 2017) Cho số phức z = 3 – 2i . Tìm phần thực và phần ảo của số phức z‾. A. Phần thực bằng -3 và phần ảo bằng -2i B. Phần thực bằng -3 và phần ảo bằng -2 C. Phần thực bằng 3 và phần ảo bằng 2i D. Phần thực bằng 3 và phần ảo bằng 2 [ads] + (ĐỀ THỬ NGHIỆM – 2017) Điểm M trong hình vẽ bên là điểm biểu diễn của số phức z. Tìm phần thực và phần ảo của số phức z. A. Phần thực là -4 và phần ảo là 3 B. Phần thực là 3 và phần ảo là -4i C. Phần thực là 3 và phần ảo là -4 D. Phần thực là -4 và phần ảo là 3i + Trong các khẳng định sau, khẳng định nào sai? A. Tập hợp các điểm biểu diễn các số phức có môđun bằng 1 là đường tròn đơn vị (đường tròn có bán kính bằng 1, tâm là gốc tọa độ) B. Tập hợp các điểm biểu diễn số phức z thỏa mãn điều kiện |z| ≤ 1 là phần mặt phẳng phía trong (kể cả biên) của đường tròn đơn vị C. Tập hợp các điểm biểu diễn các số phức có phần thực bằng 3 là một đường thẳng song song với trục hoành D. Tập hợp các điểm biểu diễn các số phức có phần thực và phần ảo thuộc khoảng (-1; 1) là miền trong của một hình vuông