Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu học tập môn Toán 8 học kì 1

Tài liệu gồm 237 trang, được biên soạn bởi thầy giáo Võ Hoàng Nghĩa và cô giáo Nguyễn Thị Hồng Loan, tóm tắt lí thuyết, các dạng toán và bài tập các chủ đề Toán 8 học kì 1. MỤC LỤC : I ĐẠI SỐ 1. CHƯƠNG 1 . PHÉP NHÂN VÀ PHÉP CHIA CÁC ĐA THỨC 2. §1 – NHÂN ĐƠN THỨC VỚI ĐA THỨC 2. A Tóm tắt lí thuyết 2. B Bài tập và các dạng toán 2. + Dạng 1. Làm phép tính nhân đơn thức với đa thức 2. + Dạng 2. Sử dụng phép nhân đơn thức với đa thức, rút gọn biểu thức cho trước 3. + Dạng 3. Tính giá trị của biểu thức cho trước 4. + Dạng 4. Tìm x biết x thỏa mãn điều kiện cho trước 4. + Dạng 5. Chứng tỏ giá trị biểu thức không phụ thuộc vào giá trị của biến 5. C Bài tập về nhà 5. §2 – NHÂN ĐA THỨC VỚI ĐA THỨC 7. A Tóm tắt lí thuyết 7. B Bài tập và các dạng toán 7. + Dạng 1. Làm phép tính nhân đa thức với đa thức 7. + Dạng 2. Chứng tỏ giá trị của biểu thức không phụ thuộc vào giá trị của biến 8. + Dạng 3. Tìm x thỏa mãn điều kiện cho trước 8. C Bài tập về nhà 9. §3 – NHỮNG HẰNG ĐẲNG THỨC ĐÁNG NHỚ (PHẦN 1) 10. A Tóm tắt lí thuyết 10. B Bài tập và các dạng toán 10. + Dạng 1. Thực hiện phép tính 10. + Dạng 2. Chứng minh các đẳng thức, rút gọn biểu thức 12. + Dạng 3. Tính nhanh 13. + Dạng 4. Chứng minh bất đẳng thức; tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của biểu thức 14. C Bài tập về nhà 16. §4 – NHỮNG HẰNG ĐẲNG THỨC ĐÁNG NHỚ (PHẦN 2) 18. A Tóm tắt lí thuyết 18. B Bài tập và các dạng toán 18. + Dạng 1. Khai triển biểu thức cho trước 18. + Dạng 2. Tính giá trị của biểu thức cho trước 19. + Dạng 3. Rút gọn biểu thức 20. + Dạng 4. Tính nhanh 20. C Bài tập về nhà 21. §5 – NHỮNG HẰNG ĐẲNG THỨC ĐÁNG NHỚ (PHẦN 3) 23. A Tóm tắt lí thuyết 23. B Bài tập và các dạng toán 23. + Dạng 1. Sử dụng hằng đẳng thức để phân tích hoặc rút gọn biểu thức cho trước 23. + Dạng 2. Tìm x 25. + Dạng 3. Khai triển biểu thức cho trước 25. C Bài tập về nhà 26. §6 – PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP ĐẶT NHÂN TỬ CHUNG 27. A Tóm tắt lí thuyết 27. B Bài tập và các dạng toán 27. + Dạng 1. Khai triển biểu thức cho trước 27. + Dạng 2. Khai triển biểu thức cho trước 28. + Dạng 3. Tìm giá trị chưa biết trong một đẳng thức 29. C Bài tập về nhà 30. §7 – PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP DÙNG HẰNG ĐẲNG THỨC 32. A Tóm tắt lí thuyết 32. B Bài tập và các dạng toán 32. + Dạng 1. Phân tích đa thức thành nhân tử 32. + Dạng 2. Phân tích đa thức thành nhân tử bằng cách thêm bớt 35. + Dạng 3. Tính nhanh biểu thức 36. + Dạng 4. Tìm x thỏa mãn điều kiện cho trước 37. C Bài tập về nhà 38. §8 – PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP NHÓM HẠNG TỬ 41. A Tóm tắt lí thuyết 41. B Bài tập và các dạng toán 41. + Dạng 1. Phân tích đa thức thành nhân tử 41. + Dạng 2. Tính giá trị của biểu thức cho trước 43. + Dạng 3. Tìm giá trị của ẩn thỏa mãn đăng thức cho trước 43. C Bài tập về nhà 45. §9 – PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG CÁCH PHỐI HỢP NHIỀU PHƯƠNG PHÁP 48. A Tóm tắt lí thuyết 48. B Bài tập và các dạng toán 48. + Dạng 1. Phân tích đa thức thành nhân tử 48. + Dạng 2. Tính giá trị của biểu thức cho trước 49. + Dạng 3. Tìm giá trị của ẩn thỏa mãn đăng thức cho trước 50. C Bài tập về nhà 51. §10 – CHIA ĐƠN THỨC CHO ĐƠN THỨC 53. A Tóm tắt lí thuyết 53. B Bài tập và các dạng toán 53. + Dạng 1. Thu gọn biểu thức 53. + Dạng 2. Tính giá trị của biểu thức 54. + Dạng 3. Tìm giá trị của ẩn thỏa mãn đẳng thức cho trước 55. C Bài tập về nhà 56. §11 – CHIA ĐA THỨC CHO ĐƠN THỨC 58. A Tóm tắt lí thuyết 58. B Bài tập và các dạng toán 58. + Dạng 1. Xét xem đa thức A có chia hết cho đơn thức B hay không 58. + Dạng 2. Thực hiện phép tính chia 59. C Bài tập về nhà 60. §12 – CHIA ĐA THỨC MỘT BIẾN ĐÃ SẮP XẾP 62. A Tóm tắt lí thuyết 62. B Bài tập và các dạng toán 62. + Dạng 1. Thực hiện phép tính chia 62. + Dạng 2. Tìm giá trị chưa biết thỏa mãn yêu cầu bài toán 66. C Bài tập về nhà 70. §13 – ÔN TẬP CHƯƠNG I 73. A Bài tập và các dạng toán 73. B Bài tập về nhà 78. CHƯƠNG 2 . PHÂN THỨC ĐẠI SỐ 86. §1 – PHÂN THỨC ĐẠI SỐ 86. A Tóm tắt lí thuyết 86. B Bài tập và các dạng toán 86. + Dạng 1. Chứng minh đẳng thức 86. + Dạng 2. Tìm đa thức thỏa mãn đẳng thức cho trước 87. C Bài tập về nhà 88. §2 – TÍNH CHẤT CƠ BẢN CỦA PHÂN THỨC 90. A Tóm tắt lí thuyết 90. B Bài tập và các dạng toán 90. + Dạng 1. Tính giá trị của phân thức 90. + Dạng 2. Biến đổi phân thức theo yêu cầu 91. + Dạng 3. Chứng minh cặp phân thức bằng nhau 93. + Dạng 4. Tìm đa thức thỏa mãn đẳng thức cho trước 93. C Bài tập về nhà 95. §3 – RÚT GỌN PHÂN THỨC ĐẠI SỐ 98. A Tóm tắt lí thuyết 98. B Bài tập và các dạng toán 98. + Dạng 1. Rút gọn phân thức 98. + Dạng 2. Chứng minh đẳng thức 100. C Bài tập về nhà 100. §4 – QUY ĐỒNG MẪU THỨC NHIỀU PHÂN THỨC 102. A Tóm tắt lí thuyết 102. B Bài tập và các dạng toán 102. C Bài tập vận dụng 106. §5 – PHÉP CỘNG CÁC PHÂN THỨC ĐẠI SỐ 107. A Tóm tắt lí thuyết 107. B Bài tập và các dạng toán 107. + Dạng 1. Cộng các phân thức đại số thông thường 107. + Dạng 2. Cộng các phân thức đại số kết hợp quy tắc đổi dấu 108. + Dạng 3. Rút gọn phân thức và tính giá trị biểu thức đó 110. C Bài tập về nhà 111. §6 – PHÉP TRỪ CÁC PHÂN THỨC ĐẠI SỐ 113. A Tóm tắt lí thuyết 113. B Bài tập và các dạng toán 113. + Dạng 1. Áp dụng phép trừ hai phân thức để thực hiện phép tính 113. + Dạng 2. Tìm phân thức thỏa mãn yêu cầu 114. C Bài tập về nhà 115. §7 – PHÉP NHÂN CÁC PHÂN THỨC ĐẠI SỐ 117. A Tóm tắt lí thuyết 117. B Bài toán và các dạng toán 117. + Dạng 1. Áp dụng phép nhân hai phân thức để thực hiện phép tính 117. + Dạng 2. Rút gọn biểu thức kết hợp nhiều quy tắc đã học 118. C Bài tập về nhà 119. §8 – PHÉP CHIA CÁC PHÂN THỨC ĐẠI SỐ 121. A Tóm tắt lí thuyết 121. B Bài toán và các dạng toán 121. + Dạng 1. Sử dụng quy tắc chia để thực hiện phép tính 121. + Dạng 2. Tìm phân thức thỏa mãn đẳng thức cho trước 122. C Bài tập về nhà 123. §9 – BIẾN ĐỔI BIỂU THỨC HỮU TỈ. GIÁ TRỊ CỦA BIỂU THỨC HỮU TỈ 124. A Tóm tắt lí thuyết 124. B Bài toán và các dạng toán 124. + Dạng 1. Biến đổi biểu thức hữu tỷ thành phân thức 124. + Dạng 2. Tìm điều kiện xác định của phân thức 125. + Dạng 3. Thực hiện phép tính với các biểu thức hữu tỉ 126. + Dạng 4. Tìm x để giá trị của một phân thức đã cho thỏa mãn điều kiện cho trước 128. C Bài tập về nhà 129. §10 – ÔN TẬP CHƯƠNG II (PHẦN I) 132. A Bài tập và các dạng toán 132. B Bài tập về nhà 135. §11 – ÔN TẬP CHƯƠNG II (PHẦN II) 138. A Bài tập và các dạng toán 138. B Bài tập về nhà 140. II HÌNH HỌC 142. CHƯƠNG 1 . TỨ GIÁC 143. §1 – TỨ GIÁC 143. A Tóm tắt lí thuyết 143. B Bài tập và các dạng toán 143. + Dạng 1. Tính số đo góc 143. + Dạng 2. Dạng toán chứng minh hình học 145. C Bài tập về nhà 146. §2 – HÌNH THANG 148. A Tóm tắt lí thuyết 148. B Bài tập và các dạng toán 148. + Dạng 1. Tính số đo góc của hình thang 148. + Dạng 2. Chứng minh tứ giác là hình thang 149. + Dạng 3. Chứng minh các tính chất hình học 150. C Bài tập về nhà 151. §3 – HÌNH THANG CÂN 153. A Tóm tắt lí thuyết 153. B Bài tập và các dạng toán 153. + Dạng 1. Tính số đo các góc, chứng minh các đoạn thẳng bằng nhau, các góc bằng nhau 153. + Dạng 2. Chứng minh hình thang cân 155. C Bài tập về nhà 156. §4 – ĐƯỜNG TRUNG BÌNH CỦA TAM GIÁC, CỦA HÌNH THANG 159. A Tóm tắt lí thuyết 159. B Bài tập và các dạng toán 159. + Dạng 1. Sử dụng định nghĩa và các định lí về đường trung bình trong tam giác chứng để chứng minh một tính chất hình học 159. + Dạng 2. Sử dụng định nghĩa và các định lí về đường trung bình trong hình thang để chứng minh một tính chất hình học 161. C Bài tập về nhà 162. §5 – ĐỐI XỨNG TRỤC 164. A Tóm tắt lí thuyết 164. B Bài tập và các dạng toán 165. + Dạng 1. Chứng minh hai điểm hoặc hai hình đối xứng nhau qua một đường thẳng 165. + Dạng 2. Sử dụng tính chất đối xứng trục để giải toán 166. C Bài tập về nhà 167. §6 – HÌNH BÌNH HÀNH 168. A Tóm tắt lí thuyết 168. B Bài tập và các dạng toán 168. + Dạng 1. Sử dụng tính chất của hình bình hành để chứng minh tính chất hình học 168. + Dạng 2. Chứng minh tứ giác là hình bình hành 169. C Bài tập về nhà 170. §7 – ĐỐI XỨNG TÂM 173. A Tóm tắt lí thuyết 173. B Bài tập và các dạng toán 173. + Dạng 1. Chứng minh hai điểm hoặc hai hình đối xứng với nhau qua một điểm 173. + Dạng 2. Sử dụng tính chất đối xứng để giải toán 174. C Bài tập về nhà 175. §8 – HÌNH CHỮ NHẬT 177. A Tóm tắt lí thuyết 177. B Bài tập và các dạng toán 177. + Dạng 1. Chứng minh tứ giác là hình chữ nhật 177. + Dạng 2. Sử dụng định lí thuận và đảo của đường trung tuyến ứng với cạnh huyền của tam giác vuông 178. + Dạng 3. Sử dụng tính chất hình chữ nhật để tính độ dài đoạn thẳng 179. + Dạng 4. Tìm điều kiện để tứ giác là hình chữ nhật 180. C Bài tập về nhà 181. §9 – ĐƯỜNG THẲNG SONG SONG VỚI MỘT ĐƯỜNG THẲNG CHO TRƯỚC 184. A Tóm tắt lí thuyết 184. B Bài tập và các dạng toán 184. + Dạng 1. Phát biểu cơ bản về tập hợp điểm 184. + Dạng 2. Sử dụng tập hợp các điểm để chứng minh các quan hệ hình học 185. C Bài tập về nhà 186. §10 – HÌNH THOI 187. A Tóm tắt lí thuyết 187. B Bài tập và các dạng toán 187. + Dạng 1. Chứng minh tứ giác là hình thoi 187. + Dạng 2. Vận dụng tính chất của hình thoi để tính toán và chứng minh các tính chất hình học 188. + Dạng 3. Tìm điều kiện để tứ giác là hình thoi 189. C Bài tập về nhà 190. §11 – HÌNH VUÔNG 193. A Tóm tắt lí thuyết 193. B Bài tập và các dạng toán 193. + Dạng 1. Chứng minh tứ giác là hình vuông 193. + Dạng 2. Vận dụng tính chất của hình vuông để chứng minh các tính chất hình học 194. + Dạng 3. Tìm điều kiện để tứ giác là hình vuông 195. C Bài tập về nhà 196. §12 – ÔN TẬP CHƯƠNG I 198. A Bài tập luyện tập 198. B Bài tập về nhà 202. CHƯƠNG 2 . ĐA GIÁC. DIỆN TÍCH ĐA GIÁC 205. §1 – ĐA GIÁC. ĐA GIÁC ĐỀU 205. A Tóm tắt lí thuyết 205. B Bài tập và các dạng toán 205. C Bài tập về nhà 208. §2 – DIỆN TÍCH HÌNH CHỮ NHẬT 210. A Tóm tắt lí thuyết 210. B Bài tập và các dạng toán 211. + Dạng 1. Tính diện tích hình chữ nhật 211. + Dạng 2. Diện tích hình vuông, diện tích tam giác vuông 212. C Bài tập về nhà 213. §3 – DIỆN TÍCH TAM GIÁC 215. A Tóm tắt lí thuyết 215. B Bài tập và các dạng toán 215. + Dạng 1. Tính toán, chứng minh hệ thức về diện tích tam giác 215. + Dạng 2. Sử dụng công thức tính diện tích để tính độ dài đoạn thẳng. Chứng minh hệ thức hình học 216. C Bài tập về nhà 218. §4 – DIỆN TÍCH HÌNH THOI 220. A Tóm tắt lí thuyết 220. B Bài tập và các dạng toán 220. C Bài tập về nhà 222. §5 – DIỆN TÍCH ĐA GIÁC 223. A Tóm tắt lí thuyết 223. B Bài tập và các dạng toán 223. C Bài tập về nhà 224. §6 – ÔN TẬP CHƯƠNG II 225. A Bài tập và các dạng toán 225. B Bài tập về nhà 228.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề nhân đơn thức với đa thức, nhân đa thức với đa thức
Tài liệu gồm 13 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề nhân đơn thức với đa thức, nhân đa thức với đa thức, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 1: Phép nhân và phép chia các đa thức. A. TRỌNG TÂM CẦN ĐẠT I. Lý thuyết 1. Nhân đơn thức với đa thức: Muốn nhân một đơn thức với một đa thức, ta nhân đơn thức đó với từng hạng tử của đa thức rồi cộng các tích với nhau. 2. Nhân đa thức với đa thức: Muốn nhân một đa thức với một đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau. II. Các dạng bài tập + Dạng 1: Thực hiện phép tính. Áp dụng quy tắc nhân đơn thức với đa thức và quy tắc nhân đa thức với đa thức để thực hiện phép tính. + Dạng 2: Tìm x với điều kiện cho trước. Áp dụng quy tắc nhân đơn thức với đa thức và quy tắc nhân đa thức với đa thức để tìm giá trị x. B. NÂNG CAO PHÁT TRIỂN TƯ DUY C. PHIẾU BÀI TỰ LUYỆN + Dạng 1: Rút gọn biểu thức. + Dạng 2: Tìm giá trị chưa biết. + Dạng 3: Tính giá trị biểu thức. + Dạng 4: Chứng minh giá trị biểu thức không phụ thuộc vào biến. + Dạng 5: Bài toán nâng cao.
Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp
Tài liệu gồm 24 trang, được biên soạn bởi thầy giáo Nguyễn Ngọc Dũng, hướng dẫn phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp, giúp học sinh học tốt chương trình Toán 8. A. TÓM TẮT LÍ THUYẾT Khi phân tích đa thức thành nhân tử, nếu cần ta phải phối hợp nhiều phương pháp để phân tích được triệt để. Các phương pháp thông thường: + Phương pháp ưu tiên số một là đặt nhân tử chung. + Phương pháp ưu tiên số hai là dùng hằng đẳng thức. + Cuối cùng là nhóm các hạng tử. Mục đích của việc nhóm các hạng tử nhằm làm cho quá trình phân tích đa thức thành nhân tử được tiếp tục bằng cách đặt nhân tử chung hoặc dùng hằng đẳng thức. Ngoài ra, ta còn có thể sử dụng các phương pháp nâng cao sau: + Phương pháp tách một hạng tử thành nhiều hạng tử. + Phương pháp thêm và bớt cùng một hạng tử. + Phương pháp đổi biến. B. CÁC DẠNG TOÁN DẠNG 1 . Phối hợp các phương pháp thông thường. + Một số bài toán, nếu chỉ áp dụng một phương pháp thì ta không thể phân tích thành nhân tử được vì vậy ta phải kết hợp hai hoặc cả ba phương pháp đã nêu. + Khi phối phợp nhiều phương pháp, thông thường phương pháp đặt nhân tử chung được ưu tiên đầu tiên rồi đến nhóm hạng tử và hằng đẳng thức, một phương pháp có thể dùng nhiều lần. DẠNG 2 . Phương pháp tách một hạng tử thành nhiều hạng tử. + Tách các hạng tử của đa thức thành tổng hoặc hiệu của nhiều hạng tử, từ đó ta ghép cặp để được các nhóm hạng tử giống nhau và làm xuất hiện nhân tử chung. + Cách tổng quát để phân tích đa thức bậc hai ax2 + bx + c thành nhân tử là: • Tách bx thành b1x + b2x sao cho b1·b2 = ac. • Đặt nhân tử chung theo từng nhóm. + Đối với đa thức bậc ba trở lên thì tùy theo đặc điểm của các hệ số mà có cách tách riêng cho phù hợp. Một thủ thuật của loại này là dùng máy tính cầm tay nhẩm một nghiệm (thường là nghiệm nguyên, giả sử là x0), khi đó ta tìm cách ghép cặp làm sao cho xuất hiện nhân tử (x − x0) là được. DẠNG 3 . Phương pháp thêm bớt cùng một hạng tử. Khi phân tích đa thức thành nhân tử, đôi khi ta cần tăng thêm các hạng tử của đa thức bằng cách thêm và bớt cùng một hạng tử. Có hai cách thêm bớt thương gặp như sau: + Thêm và bớt cùng một hạng tử làm xuất hiện hiệu của hai bình phương. + Thêm và bớt cùng một hạng tử làm xuất hiện nhân tử chung. DẠNG 4 . Phương pháp đổi biến. + Khi gặp một đa thức phức tạp, ta nên dùng cách đặt ẩn phụ (thay một đa thức của biến cũ bằng một biến mới để được một đa thức đơn giản hơn, dễ phân tích hơn). + Sau khi phân tích với biến mới, ta thay trở lại biến cũ để phân tích tiếp (nếu được). DẠNG 5 . Tìm x thỏa một đẳng thức cho trước. Một tích bằng 0 khi một trong các nhân tử của nó bằng 0. Ta thực hiện theo các bước sau: + Chuyển tất cả sang vế trái để vế phải bằng 0. + Phân tích đa thức thành nhân tử để đưa về dạng tích. + Cho một trong các nhân tử bằng 0 và tìm x.
Lý thuyết và bài tập chuyên đề tứ giác - Nguyễn Tất Thu
Tài liệu gồm 32 trang, được biên soạn bởi thầy giáo Nguyễn Tất Thu, tổng hợp lý thuyết và bài tập chuyên đề tứ giác, giúp học sinh học tốt chương trình Hình học 8 chương 1. Bài 1 . TỨ GIÁC. 1. Tứ giác. 2. Tứ giác lồi. Bài 2 . HÌNH THANG. 1. Hình thang. 2. Hình thang cân. 3. Đường trung bình của tam giác. 4. Đường trung bình của hình thang. Bài 3 . HÌNH BÌNH HÀNH. 1. Định nghĩa. 2. Tính chất. 3. Dấu hiệu nhận biết. Bài 4 . HÌNH CHỮ NHẬT. 1. Định nghĩa. 2. Tính chất. Bài 5 . HÌNH THOI. 1. Định nghĩa. 2. Tính chất. 3. Dấu hiệu nhận biết. Bài 6 . HÌNH VUÔNG.
Tài liệu tự học Toán 8 - Nguyễn Chín Em
Trong giai đoạn học sinh lớp 8 buộc phải nghỉ học kéo dài do diễn biến phức tạp của dịch bệnh Covid-19, thì việc tự học tập tại nhà là điều rất cần thiết, để đảm bảo mạch kiến thức không bị gián đoạn. Để hỗ trợ các em trong quá trình tự học môn Toán lớp 8 tại nhà, THCS. chia sẻ đến các em tài liệu tự học Toán 8 do thầy giáo Th.s Nguyễn Chín Em sưu tầm và biên soạn; tài liệu gồm có 483 trang, bao gồm đầy đủ kiến thức, phân dạng toán và hướng dẫn giải bài tập Đại số 8 và Hình học 8. Khái quát nội dung tài liệu tự học Toán 8 – Nguyễn Chín Em: PHẦN I . ĐẠI SỐ. CHƯƠNG 1 . PHÉP NHÂN VÀ PHÉP CHIA ĐA THỨC. 1 Nhân đa thức. 2 Các hằng đẳng thức đáng nhớ. 3 Phân tích đa thức thành nhân tử. 4 Chia đa thức. CHƯƠNG 2 . PHÂN THỨC ĐẠI SỐ. 1 Tính chất cơ bản của phân thức, rút gọn phân thức. 2 Các phép tính về phân thức. 3 Một số phương pháp phân tích đa thức thành nhân tử. + Phương pháp tách một hạng tử thành nhiều hạng tử. + Phương pháp thêm và bớt cùng một hạng tử. + Phương pháp hệ số bất định. + Phương pháp xét giá trị riêng. 4 Tính chia hết của số nguyên. + Chứng minh quan hệ chia hết. + Tìm số dư. + Tìm điều kiện để chia hết. 5 Tính chia hết đối với đa thức. + Tìm dư của phép chia mà không thực hiện phép chia. + Sơ đồ Hoóc-ne. + Chứng minh một đa thức chia hết cho một đa thức khác. CHƯƠNG 3 . PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN. 1 Khái niệm về phương trình. Phương trình bậc nhất. 2 Phương trình tích. 3 Phương trình chứa ẩn ở mẫu thức. 4 Giải bài toán bằng cách lập phương trình. CHƯƠNG 4 . BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN. 1 Liên hệ giữa thứ tự và phép cộng, phép nhân. 2 Bất phương trình bậc nhất một ẩn. 3 Phương trình chứa ẩn trong dấu giá trị tuyệt đối. 4 Bất phương trình chứa ẩn trong dấu trị tuyệt đối. 5 Bất phương trình tích. Bất phương trình thương. 6 Chuyên đề chứng minh bất đẳng thức180 + Các tính chất của bất đẳng thức. + Các hằng bất đẳng thức. + Các phương pháp chứng minh bất đẳng thức. + Bất đẳng thức với số tự nhiên. + Vài điểm chú ý khi chứng minh bất đẳng thức. + Áp dụng chứng minh bất đẳng thức vào giải phương trình. 7 Tìm giá trị nhỏ nhất, giá trị lớn nhất của một biểu thức. + Giá trị nhỏ nhất, giá trị lớn nhất của một biểu thức. + Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức chứa một biến. + Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức có quan hệ ràng buộc giữa các biến. + Các chú ý khi tìm giá trị nhỏ nhất, giá trị lớn nhất của một biểu thức. + Bài toán cực trị với số tự nhiên. [ads] PHẦN II . HÌNH HỌC. CHƯƠNG 1 . TỨ GIÁC. 1 Tứ giác. 2 Hình thang. 3 Dựng hình bằng thước và compa. 4 Đối xứng trục. 5 Hình bình hành. 6 Đối xứng tâm. 7 Hình chữ nhật. 8 Hình thoi. 9 Hình vuông. CHƯƠNG 2 . ĐA GIÁC. DIỆN TÍCH ĐA GIÁC. 1 Đa giác. 2 Diện tích của đa giác. CHƯƠNG 3 . CHUYÊN ĐỀ. 1 Tìm tập hợp điểm. + Hai tập hợp bằng nhau. + Các tập hợp điểm đã học. + Thứ tự nghiên cứu và trình bày lời giải bài toán tìm tập hợp điểm. + Phân chia các trường hợp trong bài toán tìm tập hợp điểm. 2 Sử dụng công thức diện tích để thiết lập quan hệ về độ dài của các đoạn thẳng. CHƯƠNG 4 . TAM GIÁC ĐỒNG DẠNG. 1 Định lý Ta-lét. 2 Định lý Ta-lét đảo. 3 Tính chất đường phân giác của tam giác. 4 Các trường hợp đồng dạng của tam giác. + Dạng 1. Trường hợp cạnh – cạnh – cạnh. + Dạng 2. Trường hợp cạnh – góc – cạnh. + Dạng 3. Trường hợp góc – góc. + Dạng 4. Phối hợp các trường hợp cạnh – góc – cạnh và góc – góc. + Dạng 5. Dựng hình. 5 Các trường hợp đồng dạng của tam giác vuông. + Hai tam giác vuông đồng dạng. + Tỉ số các đường cao, tỉ số diện tích của hai tam giác đồng dạng. + Ứng dụng thực tế của tam giác đồng dạng. CHƯƠNG 5 . HÌNH LĂNG TRỤ ĐỨNG. HÌNH CHÓP ĐỀU. 1 Hình hộp chữ nhật. Dạng 1. Hình hộp chữ nhật. Dạng 2. Diện tích. Dạng 3. Thể tích. Dạng 4. Các dạng khác. CHƯƠNG 6 . ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONGKHÔNG GIAN. QUAN HỆ SONG SONG. 1 Hình lăng trụ đứng. 2 Hình chóp đều. Hình chóp cụt đều. 3 Toán cực trị hình học. + Bài toán cực trị. + Các bất đẳng thức thường dùng để giải toán cực trị. + Các chú ý khi giải toán cực trị.