Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Giải bài toán cực trị số phức bằng phương pháp hình học giải tích - Nguyễn Hữu Tình

Tài liệu gồm 26 trang được biên soạn bởi thầy Nguyễn Hữu Tình (giáo viên trường THPT chuyên Võ Nguyên Giáp – Quảng Bình) hướng dẫn giải bài toán cực trị số phức bằng phương pháp hình học giải tích, đây là lớp các bài toán vận dụng cao số phức và thường xuất hiện trong đề thi THPT Quốc gia 2018. Trong chương trình Toán THPT, phần Đại số mà cụ thể là phần Số học, ở chương trình lớp 12, học sinh được hoàn thiện hiểu biết của mình về các tập hợp số thông qua việc cung cấp một tập hợp số, gọi là Số phức. Trong chương này, học sinh đã bước đầu làm quen với các phép toán cộng, trừ, nhân, chia, khai căn, lũy thừa; lấy môđun, … các số phức. Bằng cách đặt tương ứng mỗi số phức z = x + yi (x, y ∈ R) với mỗi điểm M(x;y) trên mặt phẳng tọa độ Oxy, ta thấy giữa Đại số và Hình học có mối liên hệ với nhau khá “gần gũi”. Hơn nữa, nhiều bài toán Đại số bên Số phức, khi chuyển sang Hình học, từ những con số khá trừu tượng, bài toán đã được minh họa một cách rất trực quan, sinh động và cũng giải được bằng Hình học với phương pháp rất đẹp. Đặc biệt, trong các kỳ thi Đại học, Cao đẳng và THPT Quốc gia những năm gần đây, việc sử dụng phương pháp Hình học để giải quyết các bài toán về Số phức là một trong những phương pháp khá hay và hiệu quả, đặc biệt là các bài toán về Cực trị trong số phức. Hơn nữa, với những bài toán Hình học theo phương pháp trắc nghiệm, nếu khi biểu diễn được trên giấy thì qua hình ảnh minh họa, ta có thể lựa chọn đáp án một cách dễ dàng. [ads] Tuy nhiên, trong thực tế giảng dạy, việc chuyển từ bài toán Đại số nói chung và Số phức nói riêng sang bài toán Hình học ở nhiều học sinh nói chung còn khá nhiều lúng túng, vì vậy việc giải các bài toán về Số phức gây ra khá nhiều khó khăn cho học sinh. Bài toán Cực trị Số phức thông thường thì có khá nhiều cách lựa chọn để giải như dùng Bất đẳng thức, dùng Khảo sát hàm số … Qua chuyên đề này, tôi muốn gợi ý cho học sinh một lối tư duy vận dụng linh hoạt các phương pháp chuyển đổi từ bài toán Đại số sang Hình học cho học sinh, giúp các em có cái nhìn cụ thể hơn về việc chuyển đổi đó và vận duy tư duy này cho những bài toán khác. Với mục tiêu đó, trong chuyên đề này, tôi chỉ tập trung giải quyết bài toán theo hướng Hình học. Không đặt nặng việc so sánh phương pháp nào nhanh hơn, tối ưu hơn phương pháp nào.

Nguồn: toanmath.com

Đọc Sách

Tổng ôn tập TN THPT 2020 môn Toán Số phức
Tài liệu gồm 35 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề số phức; có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Số phức: Vấn đề 1. Khái niệm số phức và các phép toán trên số phức. Vấn đề 2. Phương trình số phức. Vấn đề 3. Biểu diễn điểm số phức.
Số phức và các phép toán về số phức - Diệp Tuân
Tài liệu gồm 80 trang, được biên soạn bởi thầy giáo Diệp Tuân, hướng dẫn giải các dạng toán số phức và các phép toán về số phức trong chương trình Giải tích 12 chương 4 bài số 1. Khái quát nội dung tài liệu số phức và các phép toán về số phức – Diệp Tuân: Nhóm bài toán 1 . Tính toán cộng trừ, nhân chia các số phức. + Áp dụng các công thức cộng, trừ, nhân, chia và lũy thừa số phức. + Số phức và thuộc tính của nó. + Lũy thừa đơn vị ảo. Nhóm bài toán 2 . Hai số phức bằng nhau. + Áp dụng các công thức cộng, trừ, nhân, chia số phức để rút gọn đưa về tính chất hai số phức bằng nhau. + a + bi = c + di khi và chỉ khi a, b, c, d thuộc R. Nhóm bài toán 3 . Tính toán số phức có chứa lũy thừa đơn vị ảo i^n. + Áp dụng các công thức lũy thừa đơn vị ảo. + Áp dụng các phép toán cộng trừ, nhân chai số phức. [ads] Nhóm bài toán 4 . Tìm phần thực, phần ảo, số phức liên hợp và môđun của z, w. + Áp dụng phép chia hai số phức, ta cần nhân thêm số phức liên hợp của mẫu số. + Nếu sử dụng casio, ta chuyển về chế độ CMPLX (mode 2) (i tương ứng ENG). + Khi bài toán yêu cầu tìm các thuộc tính của số phức (phần thực, phần ảo, môđun hoặc số phức liên hợp) mà đề bài cho giả thiết chứa hai thành phần trong ba thành phần thì ta sẽ gọi số phức z rồi sau đó thu gọn và sử dụng kết quả hai số phức bằng nhau, giải hệ. Nhóm bài toán 5 . Các số phức z thỏa mãn biểu thức số phức là số thực, số thuần ảo. + Số phức z thuần ảo ⇔ phần thực a = 0. + Số phức z là số thực ⇔ phần ảo b = 0. Nhóm bài toán 6 . Nhóm bài toán lấy môđun hai vế của đẳng thức số phức. + Sử dụng phép kéo theo của hai số phức bằng nhau. + Kỹ thuật này chỉ được thực hiện được khi biểu thức giả thiết của bài toán được đưa về các dạng chuẩn. Nhóm bài toán 7 . Chuẩn hóa số phức. 
Bài toán tìm tập hợp điểm và cực trị của số phức - Diệp Tuân
Tài liệu gồm có 92 trang, được biên soạn bởi thầy Diệp Tuân, phân dạng và hướng dẫn giải một số dạng toán thường gặp liên quan đến tập hợp điểm và cực trị của số phức, trong chương trình Giải tích 12 chương 4 bài số 2. Khái quát nội dung tài liệu bài toán tìm tập hợp điểm và cực trị của số phức – Diệp Tuân: I. ĐIỂM BIỄU DIỄN CỦA SỐ PHỨC 1. Định nghĩa 2. Tính chất 3. Một số bài toán tìm tập hợp điểm và phương pháp + Bài toán 1. Tập hợp là một đường một đường thẳng Ax + By + C = 0. + Bài toán 2. Tập hợp là một đường một đường tròn (x – a)^2 + (y – b)^2 = R^2 hoặc x^2 + y^2 – 2ax – 2by + c = 0. + Bài toán 3. Tập hợp là một đường một đường Parabol y = ax^2 + bx + c hoặc x = ay^2 + by + c (c khác 0). + Bài toán 4. Tập hợp là một đường một đường Elíp (E): x^2/a^2 + y^2/b^2 = 1. + Bài toán 5. Tập hợp biểu diễn của số phức w = f(z) thỏa mãn điều kiện của số phức z. [ads] II. CỰC TRỊ CỦA SỐ PHỨC 1. Nhận xét : Trong nhóm bài toán tìm giá trị lớn nhất và giá trị nhỏ nhất (GTLN – GTNN / min – max) của biểu thức số phức có nhiều phương pháp giải, nhưng không có công cụ nào gọi là “vạn năng” để giải quyết hết tất cả các bài toán. Tùy vào đặc điểm của từng đề bài mà ta chọn phương pháp phù hợp sao cho nhanh, gọn, phù hợp với trắc nghiệm. Nhưng trước tiên ta cần nắm vững thật kỹ các phương pháp. + Ta có thể sử dụng phương pháp hàm số (hoặc tam thức) để tìm max – min. + Phương pháp hình học. + Phương pháp lượng giác hóa. + Phương pháp bất đẳng thức. 2. Bài toán : Cho các số phức z = x + yi (x, y thuộc R) thỏa mãn điều kiện. Tìm giá trị lớn nhất và nhỏ nhất của |f(z)|. 3. Một số bài toán tìm cực trị và phương pháp + Bài toán 6. Nếu tập hợp là một đường một đường thẳng Ax + By + C = 0. + Bài toán 7. Nếu tập hợp là một đường một đường tròn (x – a)^2 + (y – b)^2 = R^2 hoặc x^2 + y^2 – 2ax – 2by + c = 0. + Bài toán 8. Nếu tập hợp là một đường một đường Elíp (E): x^2/a^2 + y^2/b^2 = 1.
Giá trị lớn nhất và giá trị nhỏ nhất của biểu thức chứa môđun số phức
Tài liệu gồm 41 trang, phân dạng và hướng dẫn giải bài toán tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức chứa môđun số phức (GTLN – GTNN môđun số phức; max – min module số phức …), một lớp bài toán vận dụng cao (VDC) về số phức thường gặp trong các đề thi thử THPT Quốc gia môn Toán. Các dạng toán trong tài liệu giá trị lớn nhất và giá trị nhỏ nhất của biểu thức chứa môđun số phức: Dạng toán 1. Điểm và đường thẳng. Dạng 2. Điểm và đường tròn. + Phương pháp 1. Hình học. + Phương pháp 2. Bất đẳng thức cauchy – schwarz. + Phương pháp 3. Lượng giác. + Phương pháp 4. Sử dụng bất đẳng thức trị tuyệt đối. Dạng toán 3. Đường tròn và đường tròn. Dạng toán 4. Đường thẳng và đường tròn. Dạng toán 5. Đoạn thẳng và tia. Dạng toán 6. Parabol. Dạng toán 7. Một số bài toán khác.