Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán thi THPT tháng 2 năm 2023 trường THCS Đại Phúc Bắc Ninh

Nội dung Đề khảo sát Toán thi THPT tháng 2 năm 2023 trường THCS Đại Phúc Bắc Ninh Bản PDF - Nội dung bài viết Đề khảo sát Toán thi THPT tháng 2 năm 2023 trường THCS Đại Phúc Bắc Ninh Đề khảo sát Toán thi THPT tháng 2 năm 2023 trường THCS Đại Phúc Bắc Ninh Xin chào quý thầy cô và các em học sinh lớp 9 của trường THCS Đại Phúc, Bắc Ninh! Hôm nay, Sytu xin giới thiệu đến các bạn đề khảo sát môn Toán để ôn thi vào lớp 10 THPT tháng 2 năm 2023 tại trường của chúng ta. Đề thi bao gồm 40 câu trắc nghiệm (mỗi câu đúng được 1 điểm, thời gian làm bài 50 phút) và 4 câu tự luận (mỗi câu đúng được 1 điểm, thời gian làm bài 70 phút). Dưới đây là một số câu hỏi trong đề khảo sát: Cho tam giác ABC vuông tại A có AC = 20cm. Đường tròn đường kính AB cắt BC tại M, tiếp tuyến tại M của đường tròn đường kính AB cắt AC tại I. Độ dài đoạn AI bằng: A. 10cm B. 6cm C. 12cm D. 9cm Một rạp hát có 300 chỗ ngồi. Nếu mỗi dãy thêm 2 chỗ ngồi và bớt đi 3 dãy ghế thì rạp hát sẽ giảm đi 11 chỗ ngồi. Hãy tính xem trước khi có dự kiến sắp xếp trong rạp hát có mấy dãy ghế? Mỗi dãy ghế có bao nhiêu chỗ ngồi. A. 10 dãy và 30 ghế B. 15 dãy và 20 ghế C. 10 ghế và 30 dãy D. 20 dãy và 15 ghế Cho đường thẳng a và điểm O cách a một khoảng 2,5cm. Vẽ đường tròn tâm O đường kính 5 cm. Khi đó đường thẳng a: A. không cắt đường tròn B. tiếp xúc với đường tròn C. cắt đường tròn tại hai điểm phân biệt D. cắt đường tròn theo một dây có độ dài bằng đường kính Chúc các em học sinh ôn tập tốt và thi đạt kết quả cao trong kỳ thi sắp tới. Cố gắng lên, thành công sẽ đến với những ai nỗ lực!

Nguồn: sytu.vn

Đọc Sách

Đề tham khảo môn Toán tuyển sinh lớp 10 năm 2020 - 2021 sở GDĐT Đồng Nai
Thứ Hai ngày 08 tháng 06 năm 2020, sở Giáo dục và Đào tạo tỉnh Đồng Nai công bố đề tham khảo môn Toán tuyển sinh lớp 10 THPT năm học 2020 – 2021, giúp học sinh lớp 9 tham khảo, để chuẩn bị cho kỳ thi sắp tới. Đề tham khảo môn Toán tuyển sinh lớp 10 năm 2020 – 2021 sở GD&ĐT Đồng Nai gồm 06 bài toán tự luận, thời gian làm bài 120 phút. Trích dẫn đề tham khảo môn Toán tuyển sinh lớp 10 năm 2020 – 2021 sở GD&ĐT Đồng Nai : + Cho hình vuông MNPQ có MN = 4a, với 0 < a thuộc R. Tính theo a diện tích xung quanh và thể tích của hình trụ tạo bởi hình vuông MNPQ quay quanh đường thẳng MN. [ads] + Cho phương trình 2x^2 – 6x – 1 = 0 có hai nghiệm là x1 và x2. Tính P = |x1^3 – x2^3|. Lập một phương trình bậc hai một ẩn có hai nghiệm là x1 – 2×2^2 và x2 – 2×1^2. + Một chuyền may chỉ may một loại áo giống nhau và có kế hoạch may xong 4500 áo trong một thời gian quy định, với số áo may được trong mỗi ngày bằng nhau. Để hoàn thành sớm kế hoạch, mỗi ngày chuyền đã may nhiều hơn 400 áo so với số áo phải may trong một ngày theo kế hoạch, vì thế chuyền đã may xong 4500 áo sớm hơn kế hoạch 4 ngày. Tính số áo mỗi ngày chuyền may đã may trong thực tế.
Tuyển tập đề tuyển sinh lớp 10 môn Toán sở GDĐT Hà Nội (từ 1998 đến 2020)
Tài liệu gồm 68 trang, được tổng hợp và biên soạn bởi thầy Trịnh Văn Luân, tuyển tập 21 đề tuyển sinh vào lớp 10 môn Toán sở GD&ĐT Hà Nội (từ năm 1998 đến năm 2020), có đáp án và lời giải chi tiết. Đề số 1. Đề thi vào 10 thành phố Hà Nội năm 1998. Đề số 2. Đề thi tuyển sinh vào lớp 10, TP Hà Nội, 1999-2000. Đề số 3. Đề thi vào 10 thành phố Hà Nội năm 2000. Đề số 4. Đề thi tuyển sinh vào lớp 10, TP Hà Nội, 2001-2002. Đề số 5. Đề thi vào 10 thành phố Hà Nội năm 2002. Đề số 6. Đề thi tuyển sinh vào lớp 10, TP Hà Nội, 2003-2004. Đề số 7. Đề thi Toán vào lớp 10 năm học 2004-2005, Hà Nội. Đề số 8. Đề thi vào lớp 10, Sở GD&ĐT Hà Nội năm 2006. Đề số 9. Đề thi vào lớp 10, Sở GD&ĐT Hà Nội năm 2007. Đề số 10. Đề thi vào 10, Sở GD&ĐT Hà Nội năm 2008. Đề số 11. Đề thi vào lớp 10, Sở GDHN, năm 2009 – 2010. Đề số 12. Đề thi vào lớp 10 – TP Hà Nội năm 2010. Đề số 13. Đề tuyển sinh vào 10 SGD Hà Nội 2011. Đề số 14. Đề thi vào lớp 10, SGD Hà Nội 2012. Đề số 15. Đề thi vào lớp 10, SGD Hà Nội 2013. Đề số 16. Đề thi vào lớp 10, SGD Hà Nội 2014. Đề số 17. Đề thi vào lớp 10, SGD Hà Nội 2015. Đề số 18. Đề thi tuyển sinh vào lớp 10, TP Hà Nội, 2016-2017. Đề số 19. Đề thi tuyển sinh vào lớp 10, TP Hà Nội, 2017-2018. Đề số 20. Đề thi tuyển sinh vào lớp 10, TP Hà Nội, 2018-2019. Đề số 21. Đề thi tuyển sinh vào lớp 10, TP Hà Nội, 2019-2020.
Đề và tách chuyên đề tuyển sinh lớp 10 môn Toán sở GDĐT Tiền Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh tài liệu tổng hợp đề và tách chuyên đề tuyển sinh lớp 10 môn Toán sở GD&ĐT Tiền Giang từ năm 2011 đến năm 2020, nhằm giúp các em ôn tập để chuẩn bị cho kỳ thi vào lớp 10 môn Toán sắp tới. Trích dẫn đề và tách chuyên đề tuyển sinh lớp 10 môn Toán sở GD&ĐT Tiền Giang: + Cho đường tròn (O;R) đường kính AB = 2R, điểm M thuộc (O) (M khác A và B). Trên tia AB lấy điểm C sao cho AC = 3R. Đường thẳng (d) vuông góc với AB tại C cắt AM tại E. 1. Chứng minh tứ giác BCEM nội tiếp. 2. Tính AM.AE theo R. 3. Lấy N thuộc (O) (N khác A, B, M), đường thẳng AN cắt CE tại F. Chứng minh MNEF nội tiếp. [ads] + (Giải bài toán sau bằng cách lập phương trình bậc hai) Quãng đường AB dài 90 km, có hai ôtô khởi hành cùng một lúc. Ôtô thứ nhất đi từ A đến B, ô-tô thứ hai đi từ B đến A. Sau 1 giờ hai xe gặp nhau và tiếp tục đi. Xe ôtô thứ hai tới A trước xe thứ nhất tới B là 27 phút. Tính vận tốc mỗi xe. + Trong mặt phẳng Oxy, cho parabol (P): y = 1/4×2 và đường thẳng (d): y = mx − m − 2. 1. Với m = 1, vẽ đồ thị của (P) và (d) trên cùng mặt phẳng tọa độ. 2. Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt A, B khi m thay đổi. 3. Xác định m để trung điểm của đoạn thẳng AB có hoành độ bằng 1.
Đề minh họa thi vào 10 môn Toán năm 2020 - 2021 sở GDĐT Thái Nguyên
Thứ Sáu ngày 15 tháng 05 năm 2020, sở Giáo dục và Đào tạo tỉnh Thái Nguyên công bố đề minh họa kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2020 – 2021, nhằm giúp các em học sinh lớp 9 tại tỉnh Thái Nguyên chuẩn bị cho kỳ thi vượt cấp quan trọng sắp tới. Đề minh họa thi vào 10 môn Toán năm 2020 – 2021 sở GD&ĐT Thái Nguyên có dạng tự luận, đề gồm 01 trang với 10 bài toán, thời gian làm bài 120 phút. Trích dẫn đề minh họa thi vào 10 môn Toán năm 2020 – 2021 sở GD&ĐT Thái Nguyên : + Cho đường tròn (O), đường kính AB. Lấy điểm C nằm trên đường tròn (C khác A, C khác B). Các tiếp tuyến của đường tròn (O) tại A và tại C cắt nhau tại D. Gọi H là hình chiếu vuông góc của C trên đường thẳng AB. I là giao điểm của BD và CH. Chứng minh rằng Cl = HI. [ads] + Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm A và B. Vẽ tiếp tuyến chung CD của hai đường tròn (C thuộc (O), D thuộc (O’)). Lấy hai điểm E, F lần lượt thuộc các đường tròn (O), (O’) sao cho ba điểm E, B, F thẳng hàng (B nằm giữa E và F, E khác B, F khác B) và EF song song với CD. Gọi P, Q lần lượt là giao điểm của các cặp đường thẳng DA với EF và CA với EF. K là giao điểm của hai đường thẳng EC và FD. Chứng minh rằng: a. Tam giác KCD = tam giác BCD. b. KP = KQ. + Người ta đổ thêm 100 g nước vào một dung dịch chứa 20 g muối thì nồng độ của dung dịch giảm đi 10%. Hỏi trước khi đổ thêm nước thì dung dịch chứa bao nhiêu nước?