Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài giảng Toán 11 từ cơ bản đến nâng cao - Trần Đình Cư

Tài liệu gồm 784 trang, được biên soạn bởi thầy giáo Trần Đình Cư, trình bày bài giảng môn Toán 11 từ cơ bản đến nâng cao, giúp học sinh lớp 11 tham khảo khi học chương trình Toán 11. CHƯƠNG 1. HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC. BÀI 1. HÀM SỐ LƯỢNG GIÁC. Dạng 1. Tìm tập xác định của hàm số. Dạng 2. Xét tính chẵn lẻ của hàm số. Dạng 3. Tìm giá trị lớn nhất và và giá trị nhỏ nhất của hàm số lượng giác. Dạng 4. Tìm chu kì tuần hoàn của hàm số. Dạng 5. Đồ thị của hàm số lượng giác. BÀI 2. PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN. BÀI 3. MỘT SỐ PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP. Dạng 1. Phương trình bậc nhất đối với một hàm số lượng giác. Dạng 2. Phương trình bậc nhất đối với sin x và cos x. Dạng 3. Phương trình bậc hai đối với một hàm số lượng giác. Dạng 4. Phương trình bậc hai đối với sin x và cos x. Dạng 5. Phương trình chứa sin cos x x và sin cos x x. CHƯƠNG 2. TỔ HỢP – XÁC SUẤT. BÀI 1. QUY TẮC ĐẾM. Dạng 1. Quy tắc cộng. Dạng 2. Quy tắc nhân. BÀI 2. HOÁN VỊ – CHỈNH HỢP – TỔ HỢP. Dạng 1. Hoán vị. Dạng 2. Chỉnh hợp. Dạng 3. Tổ hợp. Dạng 4. Phương trình – bất phương trình. BÀI 3. NHỊ THỨC NIU – TƠN. Dạng 1. Xác định hệ số hoặc số hạng chứa k x. Dạng 2. Tìm số hạng đứng chính giữa. Dạng 3. Tìm hệ số lớn nhất trong khai triển nhị thức Niu-tơn của n. Dạng 4. Tính tổng hoặc chứng minh đẳng thức. BÀI 4&5. BIẾN CỐ VÀ XÁC SUẤT CỦA BIẾN CỐ. Dạng 1. Tính xác suất dựa vào định nghĩa cổ điển. Dạng 2. Quy tắc tính xác suất. CHƯƠNG 3. DÃY SỐ – CẤP SỐ CỘNG – CẤP SỐ NHÂN. BÀI 1. PHƯƠNG PHÁP QUY NẠP TOÁN HỌC. Dạng 1. Chứng minh đẳng thức. Dạng 2. Chứng minh bất đẳng thức. Dạng 3. Chứng minh một tính chất. Dạng 4. Một số bài toán khác. BÀI 2. DÃY SỐ. Dạng 1. Tìm số hạng của dãy số. Dạng 2. Tính tăng giảm và bị chặn của dãy số. BÀI 3. CẤP SỐ CỘNG. Dạng 1. Nhận dạng 1 dãy số là cấp số cộng. Dạng 2. Xác định số hạng, công sai và số hạng của cấp số cộng. Dạng 3. Tính tổng các số hạng trong một cấp số cộng. Dạng 4. Giải phương trình (tìm x trong cấp số cộng). Dạng 5. Chứng minh một hệ thức trong cấp số cộng lập thành cấp số cộng, bài toán có sử dụng yếu tố cấp số cộng. BÀI 4. CẤP SỐ NHÂN. Dạng 1. Xác định cấp số nhân, số hạng, công bội của cấp số nhân. Dạng 2. Tính tổng của cấp số nhân. Dạng 3. Các bài toán thực tế. CHƯƠNG 4. GIỚI HẠN. BÀI 1. GIỚI HẠN DÃY SỐ. Dạng 1. Giới hạn hữu tỉ. Dạng 2. Dãy số chứa căn thức. Dạng 3. Tính giới hạn của dãy số chứa hàm mũ. Dạng 4. Tổng của cấp số nhân lùi vô hạn. Dạng 5. Phương pháp sai phân và quy nạp tính giới hạn. BÀI 2. GIỚI HẠN HÀM SỐ. Dạng 1. Dãy số có giới hạn hữu hạn. Dạng 2. Giới hạn một bên. Dạng 3. Giới hạn tại vô cực. Dạng 4. Dạng vô định 0/0. Dạng 5. Dạng vô định vc/vc. Dạng 6. Dạng vô định vc – vc; 0.vc. BÀI 3. HÀM SỐ LIÊN TỤC. Dạng 1. Hàm số liên tục tại một điểm. Dạng 2. Hàm số liên tục trên một khoảng. Dạng 3. Số nghiệm của phương trình trên một khoảng. CHƯƠNG 5. ĐẠO HÀM. BÀI 1. ĐỊNH NGHĨA VÀ Ý NGHĨA ĐẠO HÀM. Dạng 1. Tìm số gia của hàm số. Dạng 2. Tính đạo hàm bằng định nghĩa. Dạng 3. Ý nghĩa vật lý của đạo hàm. Dạng 4. Phương trình tiếp tuyến. BÀI 2. QUY TẮC TÍNH ĐẠO HÀM. Dạng 1. Đạo hàm của hàm đa thức. Dạng 2. Đạo hàm của hàm phân thức. Dạng 3. Đạo hàm của hàm chứa căn. BÀI 3. ĐẠO HÀM HÀM SỐ LƯỢNG GIÁC. Dạng 1. Tính đạo hàm của các hàm số lượng giác. Dạng 2. Tính đạo hàm tại một điểm. Dạng 3. Giải phương trình f x 0. BÀI 4. VI PHÂN. Dạng 1. Tìm vi phân của hàm số y = f(x). Dạng 2. Tính gần đúng giá trị của một biểu thức. BÀI 5. ĐẠO HÀM CẤP HAI. Dạng 1. Tính đạo hàm cấp cao của hàm số y f x. Dạng 2. Tìm đạo hàm cấp n của hàm số y = f(x). Dạng 3. Ý nghĩa vật lý của đạo hàm cấp hai. CHƯƠNG I. PHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG TRONG MẶT PHẲNG. BÀI 1. PHÉP BIẾN HÌNH. BÀI 2. PHÉP TỊNH TIẾN. Dạng 1. Xác định ảnh của một điểm, tạo ảnh hoặc vectơ tịnh tiến. Dạng 2. Xác định ảnh của một hình qua một phép tịnh tiến. BÀI 3. PHÉP ĐỐI XỨNG TRỤC. Dạng 1. Xác định ảnh của một điểm, của một đường qua phép đối xứng trục. BÀI 4. PHÉP ĐỐI XỨNG TÂM. Dạng 1. Tìm ảnh của 1 điểm, một đường qua phép đối xứng tâm. BÀI 5. PHÉP QUAY. Dạng 1. Tìm ảnh của một điểm, của đường thẳng, đường tròn qua phép quay. Dạng 2. Tìm ảnh của một hình qua phép quay, tìm số phép quay. BÀI 6. KHÁI NIỆM PHÉP DỜI HÌNH VÀ HAI HÌNH BẰNG NHAU. Dạng 1. Xác định ảnh, tính chất khi thực hiện phép dời hình. Dạng 2. Xác định ảnh của một hình qua phép dời hình, chứng minh 2 hình bằng nhau. BÀI 7. PHÉP VỊ TỰ. Dạng 1. Tìm ảnh của một điểm qau phép vị tự. Dạng 2. Dùng phép vị tự tìm ảnh của một đường. Dạng 3. Tìm ảnh của một hình qua phép tịnh tiến. BÀI 8. PHÉP ĐỒNG DẠNG. Dạng 1. Xác định ảnh của một điểm, một đường qua phép đồng dạng. Dạng 2. Tìm ảnh của một hình qua phép đồng dạng và chứng minh hai hình đồng dạng. CHƯƠNG II. ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN QUAN HỆ SONG SONG. BÀI 1. ĐẠI CƯƠNG VỀ ĐƯỜNG THẲNG VÀ MẶT PHẲNG. Dạng 1. Dạng toán lý thuyết. Dạng 2. Tìm giao tuyến của hai mặt phẳng. Dạng 3. Tìm giao điểm của đường thẳng và mặt phẳng. Dạng 4. Thiết diện. Dạng 5. Ba điểm thẳng hàng ba đường thẳng đồng quy. Dạng 6. Tìm tập hợp giao điểm của hai đường thẳng. BÀI 2. HAI ĐƯỜNG THẲNG CHÉO NHAU VÀ HAI ĐƯỜNG THẲNG SONG SONG. Dạng 1. Câu hỏi lý thuyết. Dạng 2. Chứng minh hai đường thẳng song song. Dạng 3. Tìm giao tuyến của hai mặt phẳng. Dạng 4. Bài tập áp dụng. BÀI 3. ĐƯỜNG THẲNG VÀ MẶT PHẲNG SONG SONG. Dạng 1. Câu hỏi lý thuyết. Dạng 2. Chứng minh đường thẳng a song song với mặt phẳng (P). Dạng 3. Tìm giao tuyến của hai mặt phẳng. Thiết diện qua một điểm và song song với một đường thẳng. Dạng 4. Bài tập ứng dụng. BÀI 4. HAI MẶT PHẲNG SONG SONG. Dạng 1. Bài toán lý thuyết. Dạng 2. Chứng minh hai mặt phẳng song song. Dạng 3. Tìm giao tuyến của hai mặt phẳng và tìm thiết diện qua một điểm và song song với một mặt phẳng. Dạng 4. Tìm thiết diện của lăng trụ, hình chóp cụt. Dạng 5. Bài tập áp dụng. BÀI 5. PHÉP CHIẾU SONG SONG. Dạng 1. Vẽ hình biểu diễn của một hình trong không gian. Dạng 2. Các bài toán liên quan đến phép chiếu song song. CHƯƠNG III. VECTOR TRONG KHÔNG GIAN. QUAN HỆ VUÔNG GÓC. BÀI 1. VECTƠ TRONG KHÔNG GIAN Dạng 1. Biểu diễn vectơ. Chứng minh 1 đẳng thức vectơ. Dạng 2. Chứng minh 3 vectơ đồng phẳng, chứng minh 3 điểm thẳng hàng. Dạng 3. Tìm điểm thỏa mãn đẳng thức vectơ. BÀI 2. HAI ĐƯỜNG THẲNG VUÔNG GÓC. Dạng 1. Tính góc giữa hai đường thẳng. Dạng 2. Chứng minh hai đường thẳng vuông góc trong không gian. BÀI 3. ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG. Dạng 1. Câu hỏi lý thuyết. Dạng 2. Chứng minh đường thẳng vuông góc với mặt phẳng. Từ đó suy ra đường thẳng vuông góc với đường thẳng. Dạng 3. Xác định góc – hình chiếu – tính độ dài. Dạng 4. Thiết diện. BÀI 4. HAI MẶT PHẲNG VUÔNG GÓC. Dạng 1. Câu hỏi lý thuyết. Dạng 2. Chứng minh hai mặt phẳng vuông góc. Dạng 3. Tính góc giữa hai mặt phẳng. Dạng 4. Thiết diện. BÀI 5. KHOẢNG CÁCH. Dạng 1. Tính khoảng cách từ một điểm đến một đường thẳng. Dạng 2. Tính khoảng cách từ một điểm đến mặt phẳng. Dạng 3. Tính khoảng cách giữa hai đường thẳng chéo nhau.

Nguồn: toanmath.com

Đọc Sách

Lí thuyết số (chuyên đề bồi dưỡng học sinh giỏi Toán THPT) - Trần Quang Thọ
Chuyên đề lí thuyết số (bồi dưỡng học sinh giỏi Toán THPT) được biên soạn bởi tác giả Trần Quang Thọ (giáo viên Toán trường THPT chuyên Vị Thanh, tỉnh Hậu Giang. Số học hay đa thức đều là các chủ đề thường xuyên xuất hiện trong các đề thi học sinh giỏi cấp quốc gia, các kì thi khu vực cũng như quốc tế với các bài toán khó tới rất khó được các nước cũng như các thầy cô phát triển rất nhiều. Đa thức là mảng mà chứa đựng trong nó các yếu tố về đại số, giải tích, hình học và cả các tính chất về số học. Chính vì thế ta có thể xem đa thức có thể xem như là các bài toán tổ hợp giữa các mảng khác của Toán học cũng như đóng vai trò liên kết các mảng đó lại với nhau thành một thể thống nhất. Điều lí thú là nhiều mệnh đề khó nhất của số học được phát biểu rất đơn giản, ai cũng hiểu được; nhiều bài toán khó nhưng có thể giải rất sáng tạo với những kiến thức số học phổ thông đơn giản. Không ở đâu như trong số học,chúng ta lại có thể lần theo được dấu vết của những bài toán cổ xưa để đến được với những vấn đề mới đang còn chờ đợi người giải – Trích từ cuốn sách Số học – Bà chúa của toán học – Hoàng Chúng. Chính vì thế sự kết hợp của 2 mảng kiến thức này sẽ mang tới cho chúng ta những bài toán đẹp nhưng vẻ đẹp thì không bao giờ là dễ để chúng ta chinh phục cả, nó luôn ẩn chứa những điều khó khăn và “nguy hiểm”. Trong chủ đề của bài viết này, chúng ta sẽ đi khám phá cũng như chinh phục phần nào vẻ đẹp của sự kết hợp đó. MỤC LỤC : I. KIẾN THỨC TRỌNG TÂM. II. CÁC BÀI TOÁN. III. BÀI LUYỆN TẬP. TÀI LIỆU THAM KHẢO : [1]. A comprehensive course in number theory – Alan Baker – Cambridge University Press (2012). [2]. Problem – Solving and Selected Topics in Number Theory_ In the Spirit of the Mathematical Olympiads – Michael Th. Rassias-Springer – Verlag New York (2011). [3]. Lí thuyết số – Tài liệu bồ dưỡng học sinh giỏi – Lê Hoành Phò (2016). [4]. Tính chất số học trong các bài toán về đa thức – Phạm Viết Huy – THPT Chuyên Lê Khiết – Quảng Ngãi.
Sử dụng phương tích - trục đẳng phương trong bài toán chứng minh đồng quy, thẳng hàng
Tài liệu gồm 23 trang, hướng dẫn phương pháp sử dụng phương tích – trục đẳng phương trong bài toán chứng minh đồng quy, thẳng hàng; tài liệu được sử dụng để bồi dưỡng học sinh giỏi Toán bậc THPT. PHẦN 1 . ĐẶT VẤN ĐỀ. Các bài toán Hình học phẳng là một phần quan trọng trong các chuyên đề toán học và đồng thời nó cũng là một mảng khó trong chương trình toán THPT chuyên. Chính vì thế trong các kì thi học sinh giỏi quốc gia, thi Olympic Toán quốc tế và khu vực, những bài toán Hình học phẳng cũng hay được đề cập và thường được xem là bài toán khó của kì thi. Trong các dạng toán liên quan đến Hình học phẳng thì bài toán đồng quy, thẳng hàng vừa được coi là bài toán quen và lạ, vừa dễ vừa khó. Bởi bài toán đồng quy, thẳng hàng đã được làm quen từ khi các em bắt đầu học Hình học cho đến chúng ta cảm thấy rất quen thuộc với Hình hoc nó vẫn hiện hữu. Nó lại là bài toán có tần suất xuất hiện nhiều nhất trong tất cả các kì thi HSG các cấp với rất nhiều hình thái khác nhau, mức độ khác nhau thậm chí là rất khó. Các em học sinh bậc Trung học phổ thông thường gặp một số khó khăn khi tiếp cận các dạng toán liên quan đến bài toán đồng quy thẳng hàng nói riêng và bài toán Hình học phẳng nói chung bởi không biết phải bắt đầu từ đâu và khó khăn khi định hướng vẽ hình phụ. Cái khó của các em chính là không nắm được tường tận các phương pháp giải quyết từ đó dẫn đến khó khăn trong khâu định hướng. Để hiểu và vận dụng tốt một số dạng toán cơ bản và vận dụng kiến thức Hình học phẳng vào giải toán đồng quy thẳng hàng thì thông thường học sinh phải có kiến thức nền tảng Hình học tương đối đầy đủ và chắc chắn trên tất cả các lĩnh vực của nó. Đó là một khó khăn rất lớn đối với giáo viên và học sinh khi giảng dạy và học tập phần các kiến thức cần thiết trong Hình học. Trong số rất nhiều các phương pháp để giải quyết bài toán đồng quy, thẳng hàng tác giả lựa chọn công cụ “Phương tích, trục đẳng phương”. Đây là một trong những công cụ mạnh và hữu hiệu để giải quyết lớp bài toán này. PHẦN II . NỘI DUNG SỬ DỤNG PHƯƠNG TÍCH – TRỤC ĐẲNG PHƯƠNG. 1.1 Lý thuyết. 1.1.1 Phương tích của một điểm đối với đường tròn. 1.1.2. Trục đẳng phương của hai đường tròn. 1.1.3. Tâm đẳng phương. 1.2 Bài tập minh họa. 1.3 Bài tập tương tự. TÀI LIỆU THAM KHẢO
Sử dụng định lý Ceva và Menelaus trong bài toán chứng minh đồng quy, thẳng hàng
Tài liệu gồm 18 trang, hướng dẫn phương pháp sử dụng định lý Ceva và Menelaus trong bài toán chứng minh đồng quy, thẳng hàng; tài liệu được sử dụng để bồi dưỡng học sinh giỏi Toán bậc THPT. Phần 1 . Đặt vấn đề. Các bài toán Hình học phẳng là một phần quan trọng trong các chuyên đề toán học và đồng thời nó cũng là một mảng khó trong chương trình toán THPT chuyên. Chính vì thế trong các kì thi học sinh giỏi quốc gia, thi Olympic Toán quốc tế và khu vực, những bài toán Hình học phẳng cũng hay được đề cập và thường được xem là bài toán khó của kì thi. Trong các dạng toán liên quan đến Hình học phẳng thì bài toán đồng quy, thẳng hàng vừa được coi là bài toán quen và lạ, vừa dễ vừa khó. Bởi bài toán đồng quy, thẳng hàng đã được làm quen từ khi các em bắt đầu học Hình học cho đến chúng ta cảm thấy rất quen thuộc với Hình hoc nó vẫn hiện hữu. Nó lại là bài toán có tần suất xuất hiện nhiều nhất trong tất cả các kì thi HSG các cấp với rất nhiều hình thái khác nhau, mức độ khác nhau thậm chí là rất khó. Các em học sinh bậc Trung học phổ thông thường gặp một số khó khăn khi tiếp cận các dạng toán liên quan đến bài toán đồng quy thẳng hàng nói riêng và bài toán Hình học phẳng nói chung bởi không biết phải bắt đầu từ đâu và khó khăn khi định hướng vẽ hình phụ. Cái khó của các em chính là không nắm được tường tận các phương pháp giải quyết từ đó dẫn đến khó khăn trong khâu định hướng. Để hiểu và vận dụng tốt một số dạng toán cơ bản và vận dụng kiến thức Hình học phẳng vào giải toán đồng quy thẳng hàng thì thông thường học sinh phải có kiến thức nền tảng Hình học tương đối đầy đủ và chắc chắn trên tất cả các lĩnh vực của nó. Trong số rất nhiều các phương pháp để giải quyết bài toán đồng quy, thẳng hàng tác giả lựa chọn các phương pháp “Sử dụng định lý Ceva và Menelaus” để giải quyết lớp bài toán trên. Đây là phương pháp khá cổ điển và đặc trưng cho lớp bài toán này. Phần 2 . ĐỊNH LÝ CEVA VÀ MENELAUS TRONG BÀI TOÁN CHỨNG MINH ĐỒNG QUY, THẲNG HÀNG. 1 Lý thuyết. 1.1. Định lí Ceva. 1.2. Định lí Ceva dạng lượng giác (Ceva sin). 1.3 Định lí Menelaus. 2 Bài tập minh họa. 3 Bài tập tương tự. TÀI LIỆU THAM KHẢO
Ứng dụng hàng điểm điều hòa trong bài toán đường phân giác và bài toán đồng quy, thẳng hàng
Tài liệu gồm 29 trang, được biên soạn bởi thầy giáo Nguyễn Bá Hoàng (trường THPT chuyên Lào Cai, tỉnh Lào Cai), hướng dẫn phương pháp ứng dụng hàng điểm điều hòa trong bài toán đường phân giác và bài toán đồng quy, thẳng hàng; tài liệu được sử dụng để bồi dưỡng học sinh giỏi Toán bậc THPT. A. PHẦN MỞ ĐẦU I. Lý do chọn đề tài: Các bài toán về Hình học phẳng thường xuyên xuất hiện trong các kì thi HSG môn toán và luôn được đánh giá là nội dung khó trong đề thi. Có rất nhiều dạng bài tập về hình học phẳng cùng với sự tương ứng của các công cụ đi cùng, trong đó hàng điểm điều hòa là một trong những công cụ mạnh để giải nhiều lớp bài toán về hình học. Mặc dù là một vấn đề khá quen thuộc của hình học phẳng, kiến thức về nó khá đơn giản và dễ hiểu, tuy nhiên nó có ứng dụng nhiều đối với các bài toán chứng minh vuông góc, đồng quy, thẳng hàng, điểm cố đinh, đường cố định hay các bài toán về tập hợp điểm …. Chính vì thế trong các kì thi học sinh giỏi quốc gia, thi Olympic Toán quốc tế và khu vực, những bài toán có liên quan đến hàng điểm điều hòa thường xuyên được đề cập và thường được xem là những dạng toán hay của kì thi. Chính vì vậy tác giả lựa chọn chuyên đề: “Ứng dụng hàng điểm điều hòa trong bài toán phân giác và đồng quy, thẳng hàng” để thấy được ứng dụng quan trọng của hàng điểm điều hòa đối với khá nhiều dạng bài tập hình học phẳng. Trong chuyên đề tác giả cố gắng tập hợp được các bài toán đặc trưng cho việc sử dụng công cụ hàng điểm điều hòa. II. Mục đích của chuyên đề: Thông qua chuyên đề “Ứng dụng hàng điểm điều hòa trong bài toán phân giác và đồng quy, thẳng hàng” tác giả rất mong muốn nhận được góp ý trao đổi của các bạn đồng nghiệp và các em học sinh. Chúng tôi mong muốn chuyên đề này góp một phần nhỏ để việc ứng dụng hàng điểm điều hòa trong bài toán hình học phẳng đạt hiệu quả cao nhất. Từ đó giúp các em học sinh hiểu rõ hơn về việc sử dụng hàng điểm điều hòa và tăng khả năng vận dụng nó vào giải các bài toán hình học một cách tốt nhất. B. PHẦN NỘI DUNG I. Hệ thống lý thuyết cơ bản về hàng điểm điều hòa. 1. Tỉ số kép của hàng điểm. 2. Hàng điểm điều hòa. 3. Tỉ số kép của chùm đường thẳng – Chùm điều hòa. 4. Tứ giác điều hòa. II. Bài tập áp dụng. Dạng 1: Khai thác bài toán liên quan đến đường phân giác. Dạng 2: Chứng minh đồng quy, thẳng hàng. C. PHẦN KẾT LUẬN Trên đây là một số bài toán về đường phân giác, đồng quy, thẳng hàng sử dụng đến hàng điểm điều hòa. Kiến thức về hàng điểm điều hòa khá dễ hiểu và đơn giản nhưng ứng dụng của nó thì khá nhiều. Thông qua đó giúp học sinh tiếp cận và hình thành kĩ năng sử dụng hàng điểm điều hòa, cũng như lựa chọn được cách giải bài toán phù hợp, tăng thêm tính say mê, tích cực tìm tòi và sáng tạo. Chuyên đề trên nhằm mục đích trao đổi với các thầy cô dạy bộ môn toán về việc sử dụng hàng điểm điều hòa để giải các bài toán hình học phẳng. Do kiến thức còn nhiều hạn chế nên chắc rằng chuyên đề khó tránh khỏi các thiếu sót, chúng tôi mong có sự góp ý của quý thầy cô để chuyên đề được hoàn thiện hơn. Tác giả xin chân thành cảm ơn!