Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 - 2024 sở GDĐT Quảng Bình

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chung) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Bình; kỳ thi được diễn ra vào ngày 07 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 – 2024 sở GD&ĐT Quảng Bình : + Cho phương trình x2 + 3x + m – 3 = 0 (m là tham số). a. Tìm tất cả các giá trị của m để phương trình có hai nghiệm. b. Trong trường hợp phương trình có hai nghiệm x1, x2, tìm tất cả các giá trị của m để x1, x2 thỏa mãn hệ thức 2x1x2 – (x1 + x2) = 2. + Cho nửa đường tròn tâm O đường kính AB và điểm C thuộc nửa đường tròn đó (C khác A và B). Lấy điểm E thuộc cung AC (E khác A và C) sao cho AE < BC, gọi M là giao điểm của AC và BE. Kè MH vuông góc với AB tại H. 1. Chứng minh tứ giác BCMH nội tiếp. 2. Chứng minh ACE đồng dạng với HCM. 3. Gọi K là giao điểm của OE và HC. Chứng minh KE.KO = KC.KH. + Với x thuộc R, tìm giá trị nhỏ nhất của biểu thức P = 9×2 – 2|3x – 2| – 12x + 2028.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán tuyển sinh lớp 10 năm 2020 - 2021 trường THCS Yên Mỹ - Hà Nội
Thứ Năm ngày 21 tháng 05 năm 2020, trường THCS Yên Mỹ, huyện Thanh Trì, thành phố Hà Nội tổ chức kỳ thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2020 – 2021. Đề thi thử Toán tuyển sinh lớp 10 năm 2020 – 2021 trường THCS Yên Mỹ – Hà Nội gồm có 05 bài toán, thời gian làm bài 90 phút. Trích dẫn đề thi thử Toán tuyển sinh lớp 10 năm 2020 – 2021 trường THCS Yên Mỹ – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một hội đồng thi dự định có 352 thí sinh nhưng thực tế thì chỉ có 325 thí sinh. Nếu xếp thêm 1 thí sinh vào mỗi phòng thì số phòng giảm đi 2 phòng. Hỏi lúc đầu dự định có bao nhiêu phòng thi. [ads] + Tính thể tích một viên kẹo sô-cô-la là hình cầu có đường kính bằng 3 cm, làm tròn đến chữ số thập phân thứ hai. + Cho Parabol (P): y = x^2 và đường thẳng (d): y = 2mx – 2m +1 (với m là tham số). a) Chứng minh (d) và (P) luôn có điểm chung. Từ đó tìm toạ độ giao điểm của (d) và (P) khi m = 2. b) Tìm m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thỏa mãn x1^2 = x2 – 4.
Tuyển tập 40 đề thi thử vào lớp 10 môn Toán các trường THCS tại Hà Nội
Tài liệu gồm 316 trang, tuyển tập 40 đề thi thử tuyển sinh vào lớp 10 môn Toán của các trường THCS trên địa bàn thành phố Hà Nội, có lời giải chi tiết. Trường THCS Minh Khai, Hà Nội. Trường THCS Mạc Đĩnh Chi, Hà Nội. Trường THCS Láng Thượng, Hà Nội. Trường THCS Giảng Võ, Hà Nội. Phòng Giáo dục và Đào tạo Cầu Giấy, Hà Nội. Trường THCS Cát Linh, Hà Nội. Trường THCS Archimedes, Hà Nội. Trung tâm bồi dưỡng văn hóa Hà Nội – Amsterdam. Phòng Giáo dục và Đào tạo quận Long Biên, Hà Nội. Vietelite Education, Hà Nội. Trường THCS Đại Áng, Hà Nội. Trung tâm bồi dưỡng văn hóa A-Star, Hà Nội. Trường THCS Archimedes Academy, Hà Nội. Trường THCS Phương Liệt, Hà Nội. Trường THCS Phan Huy Chú, Hà Nội. Trường THCS Phương Liệt, Hà Nội. Trường THCS Bế Văn Đàn, Hà Nội. [ads] Trường THCS & THPT Lương Thế Vinh 2019 – 2020, Hà Nội. Trường THCS Archimedes Academy, Hà Nội. Trường THCS & THPT Lương Thế Vinh, Hà Nội. Trường THCS Archimedes Academy, Hà Nội. Trường THCS Phan Huy Chú, Hà Nội. Trường THCS Phương Liệt, Hà Nội. Trường THCS Phụng Thượng, Hà Nội. Trường THPT Trần Nhân Tông, Hà Nội. Trường THCS Nghĩa Tân, Hà Nội. Trường THCS Thống Nhất, Hà Nội. Trường THCS Nam Từ Liêm, Hà Nội. Trường THCS Mạc Đĩnh Chi, Hà Nội. Trường THCS Phan Chu Trinh, Hà Nội. Trường THCS Phan Đình Giót, Hà Nội. Trường THCS Nghĩa Tân, Hà Nội. Trường THCS Hoàng Hoa Thám, Hà Nội. Trường THCS Nhân Chính, Hà Nội. Trường THCS Lê Quí Đôn, Hà Nội. Trường THCS Ngô Sĩ Liên, Hà Nội. Trường THCS Hoàng Hoa Thám, Hà Nội. Trường THCS Nhân Chính, Hà Nội. Trường THCS Ngô Sĩ Liên, Hà Nội. Trường THCS Ba Đình, Hà Nội.
Đề thi thử vào lớp 10 năm 2020 - 2021 trường THCS Kim Giang - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi thử vào lớp 10 năm 2020 – 2021 trường THCS Kim Giang – Hà Nội, đề được biên soạn theo chuẩn cấu trúc đề tuyển sinh vào lớp 10 THPT của sở Giáo dục và Đào tạo thành phố Hà Nội những năm gần đây. Trích dẫn đề thi thử vào lớp 10 năm 2020 – 2021 trường THCS Kim Giang – Hà Nội : + Giải toán bằng cách lập phương trình: Một mảnh vườn trồng rau quả hình chữ nhật có diện tích là 60 m2. Đoạn thẳng dài nhất nối hai điểm bất kỳ trên khu vườn có độ dài bằng 13 m. Người ta cần xây tường bao quanh khu vườn với chiều cao 1,5 m để đảm bảo an toàn cho các loại cây hoa màu. Hỏi diện tích tường cần xây là bao nhiêu mét vuông? + Người ta làm một thùng chứa nước mưa dạng hình trụ không có nắp bằng tôn. Diện tích tôn tối thiểu cần để làm thùng đó bằng 5 pi (m2) với pi = 3,14. Tính thể tích của thùng đó biết chiều cao thùng bằng đường kính đáy (làm tròn đến hai chữ số thập phân). + Cho parabol (P): y = x2 và đường thẳng (dm): y = mx + 2 (m là tham số). a) Chứng minh rằng với mọi giá trị của m thì (dm) và (P) luôn cắt nhau tại hai điểm phân biệt A và B nằm về hai phía của trục tung. b) Gọi C là giao điểm của (dm) với trục tung. Tìm các giá trị của m để diện tích tam giác OAC bằng 2 lần diện tích tam giác OBC.
Đề thi thử vào lớp 10 môn Toán năm 2020 - 2021 trường THCS Phú La - Hà Nội
Nhằm chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 THPT năm học 2020 – 2021 sắp tới, trường THCS Phú La, quận Hà Đông, thành phố Hà Nội tổ chức kỳ thi thử vào lớp 10 môn Toán năm học 2020 – 2021. Đề thi thử vào lớp 10 môn Toán năm 2020 – 2021 trường THCS Phú La – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi thử vào lớp 10 môn Toán năm 2020 – 2021 trường THCS Phú La – Hà Nội : + Một cái trục lăn sơn có dạng hình trụ. Đường kính ống là 6cm, chiều dài trục là 25cm. Sau khi lăn hết 20 vòng liên tiếp thì diện tích sơn được trên mặt tường phẳng là bao nhiêu mét vuông? (cho pi = 3,14). [ads] + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một người dự định đi xe đạp từ A tới B dài 20 km với vận tốc không đổi. Vì việc gấp nên người ấy đã đi nhanh hơn dự định 3 km/h và đến sớm hơn dự định là 20 phút. Tính vận tốc dự định của người đó. + Cho Parabol (P): y = -x^2 và đường thẳng (d) có phương trình y = 2x + m. a) Khi m = – 3 tìm tọa độ giao điểm của (d) và (P). b) Tìm m để (d) cắt (P) tại hai điểm phân biệt nằm cùng một phía đối với Oy.