Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào năm 2023 2024 phòng GD ĐT Kỳ Anh Hà Tĩnh

Nội dung Đề thi thử Toán vào năm 2023 2024 phòng GD ĐT Kỳ Anh Hà Tĩnh Bản PDF Sytu trân trọng giới thiệu đến quý thầy cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 - 2024 do Phòng Giáo dục và Đào tạo huyện Kỳ Anh, tỉnh Hà Tĩnh tổ chức. Kỳ thi sẽ diễn ra vào ngày 19 tháng 05 năm 2023, đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm.

Một số câu hỏi trong đề thi như sau:
1. Cho phương trình \(2x^2 - mx + m^2 - 30 = 0\) (trong đó m là tham số). Tìm giá trị của m để phương trình có 2 nghiệm thỏa mãn điều kiện: \(12x + 1 = 2\).
2. Trong tam giác ABC có góc B và góc C đều nhọn. Biết AC = 8cm và \(\frac{\sin \angle ACB}{\sin \angle ABC} = \frac{2}{3}\). Hãy tính độ dài các đoạn thẳng AH và AB, sau đó tính diện tích tam giác ABC.
3. Trường Giang Đồng tổ chức chuyến thăm công ty TNHH Gang thép Hưng Nghiệp Formosa Hà Tĩnh. Ban đầu có 120 người đăng ký tham gia, sau đó có thêm 66 học sinh đăng ký nên trường phải thuê thêm 2 xe ô tô để chở đoàn sao cho số người trên mỗi xe bằng nhau. Hỏi ban đầu trường dự định thuê bao nhiêu xe?

Nội dung trên là chỉ một phần của đề thi thử Toán tuyển sinh vào lớp 10 năm 2023 - 2024 của Phòng GD&ĐT Kỳ Anh - Hà Tĩnh. Qua đó, các em học sinh sẽ được rèn luyện, nâng cao kiến thức và kỹ năng giải bài toán một cách hiệu quả. Đề thi cũng giúp phản ánh khả năng làm bài, chuẩn bị tốt cho kỳ thi chính thức. Chúc các em thành công và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Tuyển tập 21 đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán
Tài liệu gồm 32 trang tuyển tập 21 đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán. Một số đề có hướng dẫn giải.
Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán Phòng GD và ĐT Tam Đảo - Vĩnh Phúc lần 1
Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán Phòng GD và ĐT Tam Đảo – Vĩnh Phúc lần 1 gồm 4 câu hỏi trắc nghiệm và 5 câu tự luận, có đáp án và lời giải chi tiết. Trích một số bài toán trong đề: + Hai vòi nước cùng chảy vào một cái bể không có nước thì trong 5 giờ sẽ đầy bể. Nếu vòi thứ nhất chảy trong 3 giờ và vòi thứ 2 chảy trong 4 giờ thì được 2/3 bể nước. Hỏi nếu mỗi vòi chảy một mình thì trong bao lâu mới đầy bể. [ads] + Cho đường tròn (O), M là một điểm nằm ngoài đường tròn (O). Qua M kẻ hai tiếp tuyến MA, MB đến đường tròn (O) với A, B là các tiếp điểm; MPQ là một cát tuyến không đi qua tâm của đường tròn (O), P nằm giữa M và Q. Qua P kẻ đường thẳng vuông góc với OA cắt AB, AQ tương ứng tại R, S. Gọi trung điểm đoạn PQ là N. Chứng minh rằng: a) Các điểm M, A, N, O, B cùng thuộc một đường tròn, chỉ rõ bán kính của đường tròn đó. b) PR = RS.
Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán trường THCS An Đà - Hải Phòng lần 1
Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán trường THCS An Đà – Hải Phòng lần 1 gồm 5 câu tự luận. Trích một số bài toán trong đề: + Chào mừng Lễ hội Hoa phượng đỏ năm 2017. Hội mĩ thuật Hải Phòng thiết kế một Pano quảng cáo có dạng là một hình chữ nhật. Hình chữ nhật đó có chu vì bằng 68 m và diện tích bằng 273 m2. Em hãy cho biết kích thước của tấm Pano quảng cáo hình chữ nhật ở trên có đạt “Tỉ lệ vàng” hay không ? (Kết quả làm tròn đến chữ số thập phân thứ hai). + Cho đường tròn (O; R) và dây BC cố định không đi qua tâm O. A là điểm bất kỳ trên cung lớn BC. Ba đường cao AD, BE, CF của tam giác ABC cắt nhau tại điểm H. [ads] a) Chứng minh các tứ giác HDBF, BCEF nội tiếp b) Chứng minh DA là phân giác của góc EDF c) Gọi K là điểm đối xứng của A qua tâm O. Chứng minh HK đi qua trung điểm của đoạn BC d) Giả sử góc BAC bằng 60 độ. Chứng minh tam giác AHO là tam giác cân
Tuyển tập 21 đề thi thử tuyển sinh vào năm 2017 môn Toán
Nội dung Tuyển tập 21 đề thi thử tuyển sinh vào năm 2017 môn Toán Bản PDF - Nội dung bài viết Tuyển tập 21 đề thi thử tuyển sinh vào năm 2017 môn Toán Tuyển tập 21 đề thi thử tuyển sinh vào năm 2017 môn Toán Bộ tài liệu này bao gồm 32 trang với 21 đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán. Trong số các đề thi có hướng dẫn giải chi tiết giúp cho việc học tập và ôn tập hiệu quả hơn.