Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi vào 10 chuyên môn Toán (không chuyên) năm 2021 - 2022 sở GDĐT Cà Mau

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (không chuyên) năm học 2021 – 2022 sở GD&ĐT Cà Mau; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi vào 10 chuyên môn Toán (không chuyên) năm 2021 – 2022 sở GD&ĐT Cà Mau : + Theo các chuyên gia về sức khỏe, người trưởng thành cần đi bộ từ 5000 bước mỗi ngày sẽ rất tốt cho sức khỏe. Để rèn luyện sức khỏe, anh Sơn và chị Hà đề ra mục tiêu mỗi ngày một người phải đi bộ ít nhất 6000 bước. Hai người cùng đi bộ ở công viên và thấy rằng, nếu cùng đi trong 2 phút thì anh Sơn bước nhiều hơn chị Hà 20 bước. Hai người cùng giữ nguyên tốc độ như vậy nhưng chị Hà đi trong 5 phút thì lại nhiều hơn anh Sơn đi trong 3 phút là 160 bước. Hỏi mỗi ngày anh Sơn và chị Hà cùng đi bộ trong 1 giờ thì họ đã đạt được số bươc tối thiểu mà mục tiêu đề ra chưa? (Giả sử tốc độ đi bộ hằng ngày của hai người không đổi). + Cho phương trình: 2 2 x m x m m 2 1 4 7 0 (m là tham số). a) Tìm m để phương trình đã cho có nghiệm. b) Tìm m để phương trình đã cho có hai nghiệm âm phân biệt. + Cho tam giác nhọn ABC AB AC nội tiếp đường tròn tâm O. Hai tiếp tuyến tại B và C của đường tròn O cắt nhau tại M, tia AM cắt đường tròn O tại điểm D. a) Chứng minh rằng tứ giác OBMC nội tiếp được đường tròn. b) Chứng minh 2 MB MD MA. c) Gọi E là trung điểm của đoạn thẳng AD; tia CE cắt đường tròn O tại điểm F. Chứng minh rằng: BF AM.

Nguồn: toanmath.com

Đọc Sách

Đề giao lưu Toán vào lớp 10 năm 2023 trường THPT Quảng Xương 1 - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề giao lưu kiến thức môn Toán tuyển sinh vào lớp 10 THPT năm 2023 trường THPT Quảng Xương 1, tỉnh Thanh Hoá; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giao lưu Toán vào lớp 10 năm 2023 trường THPT Quảng Xương 1 – Thanh Hoá : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng d có phương trình y mx m 1 (m là tham số). Tìm giá trị của m để đường thẳng d đi qua điểm M 1 3. + Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn O AB AC các đường cao BE CF. Gọi K là giao điểm của đường thẳng EF và BC. Đường thẳng AK cắt đường tròn O tại M (M khác A). 1. Chứng minh BFEC là tứ giác nội tiếp. 2. Chứng minh MAF MEF. 3. Chứng minh BM AC AM BC CM AB. + Cho ba số thực dương abc thay đổi thỏa mãn điều kiện 3 a b c abc. Tìm giá trị nhỏ nhất của biểu thức 5 3 3 2 a b c S a b c a.
Đề khảo sát Toán (chuyên) vào lớp 10 năm 2023 - 2024 trường THPT chuyên Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát môn Toán (dành cho thí sinh thi vào chuyên Toán) tuyển sinh vào lớp 10 năm học 2023 – 2024 trường THPT chuyên Thái Nguyên, tỉnh Thái Nguyên. Trích dẫn Đề khảo sát Toán (chuyên) vào lớp 10 năm 2023 – 2024 trường THPT chuyên Thái Nguyên : + Cho 1003 số hữu tỷ khác 0, trong đó 4 số bất kỳ nào trong chúng cũng có thể lập thành một tỉ lệ thức. Chứng minh rằng trong các số đã cho có ít nhất 1000 số bằng nhau. + Cho hình thang ABCD nội tiếp đường tròn bán kính R = 3cm với BC = 2 cm và AD = 4cm. Lấy điểm M trên cạnh AB sao cho MB = 3MA. Gọi N là trung điểm của cạnh CD. Đường thẳng MN cắt AC tại P. a) Tính tỉ số CP/PA. b) Tính diện tích tứ giác APND. + Cho tứ giác ABCD nội tiếp đường tròn tâm O. Các đường phân giác của các góc BAD, BCD cắt nhau tại điểm K nằm trên đường chéo BD. Gọi M là trung điểm của BD, Q là giao điểm khác A của đường thẳng AM và đường tròn (O). Đường thẳng qua C song song với AD cắt tia AM tại P. N là trung điểm của CP. Chứng minh rằng: a) Hai tam giác ABQ và ADQ có diện tích bằng nhau. b) DN vuông góc với CP.
Đề khảo sát Toán (Tin) vào lớp 10 năm 2023 - 2024 trường THPT chuyên Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát môn Toán (dành cho thí sinh thi vào chuyên Tin) tuyển sinh vào lớp 10 năm học 2023 – 2024 trường THPT chuyên Thái Nguyên, tỉnh Thái Nguyên. Trích dẫn Đề khảo sát Toán (Tin) vào lớp 10 năm 2023 – 2024 trường THPT chuyên Thái Nguyên : + Cho hai phương trình: x2 − bx + 4c = 0 (1); x2 – b2x – 4bc = 0 (2) (trong đó x là ẩn, b và c là các tham số). Biết phương trình (1) có hai nghiệm x1 và x2, phương trình (2) có hai nghiệm x3 và x4 thỏa mãn điều kiện x3 − x1 = x4 − x2 = 1. Xác định b và c. + Cho tập hợp X chứa đúng 501 số nguyên dương bất kỳ thỏa mãn mỗi số đó nhỏ hơn hoặc bằng 1000. Chứng minh rằng trong X có ít nhất một số chia hết cho một số khác. + Cho tam giác nhọn ABC có ba đường cao AD, BE, CF cắt nhau tại H. Gọi M là trung điểm của đoạn AH. a. Chứng minh tứ giác BDHF nội tiếp đường tròn. b. Chứng minh AF.AB = AH.AD. c. Gọi O là trung điểm của cạnh BC, chứng minh ME vuông góc với EO. d. Gọi I và J tương ứng là tâm đường tròn nội tiếp hai tam giác BDF và EDC. Chứng minh DJI = DEB.
Bộ đề trắc nghiệm ôn thi tuyển sinh vào lớp 10 THPT môn Toán
Tài liệu gồm 177 trang, được biên soạn bởi thầy giáo Trần Đình Cư, tuyển tập 20 đề trắc nghiệm ôn thi tuyển sinh vào lớp 10 THPT môn Toán; các đề được biên soạn theo hình thức trắc nghiệm 100% với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, không kể thời gian phát đề.