Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán 12 thi THPT QG 2020 trường THPT Lê Lợi - Thanh Hóa

Tháng 11 năm 2019, trường THPT Lê Lợi, tỉnh Thanh Hóa tổ chức kỳ thi khảo sát chất lượng các môn thi THPT Quốc gia năm học 2019 – 2020, nhằm giúp các em học sinh khối 12 của nhà trường từng bước ôn tập, rèn luyện để có thể đạt kết quả cao nhất trong kỳ thi quan trọng này. Đề KSCL Toán 12 thi THPT QG 2020 trường THPT Lê Lợi – Thanh Hóa có mã đề 101, đề thi gồm có 07 trang, được biên soạn dựa trên định hướng thi Toán trắc nghiệm của Bộ Giáo dục và Đào tạo cho kỳ thi năm nay, ngoài chương trình Toán 12 đã học, đề thi còn có một số bài toán thuộc chương trình Toán 10 và Toán 11. Trích dẫn đề KSCL Toán 12 thi THPT QG 2020 trường THPT Lê Lợi – Thanh Hóa : + Cho hình chóp S.ABC, M và N là các điểm thuộc các cạnh SA và SB sao cho MA = 2SM, SN = 2NB, (a) là mặt phẳng qua MN và song song với SC. Mặt phẳng (a) chia khối chóp S.ABC thành hai khối đa diện (H1) và (H2) với (H1) là khối đa diện chứa điểm S, (H2) là khối đa diện chứa điểm A. Gọi V1 và V2 lần lượt là thể tích của (H1) và (H2). Tính tỉ số V1/V2. [ads] + Một nhà kho có dạng khối hộp chữ nhật đứng ABCD.A’B’C’D’, nền là hình chữ nhật ABCD có AB = 3m, BC = 6m, chiều cao AA’ = 3m, chắp thêm một lăng trụ tam giác đều mà một mặt bên là A’B’C’D’ và A’B’ là một cạnh đáy của lăng trụ. Tính thể tích của nhà kho? + Cho hàm số f(x) = (x^3 + 8)/(4x + 8) khi x khác -2 và f(x) = 3 khi x = -2. Chọn khẳng định đúng trong các khẳng định sau? A. Hàm số gián đoạn tại x = 2. B. Hàm số liên tục tại x = -2. C. Hàm số không liên tục trên tập R. D. Hàm số có tập xác định là R/{-2}.

Nguồn: toanmath.com

Đọc Sách

Đề KSCL lớp 12 môn Toán lần 2 năm 2020 2021 trường Quảng Xương 2 Thanh Hóa
Nội dung Đề KSCL lớp 12 môn Toán lần 2 năm 2020 2021 trường Quảng Xương 2 Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán lớp 12 lần 2 năm học 2020 – 2021 trường THPT Quảng Xương 2, tỉnh Thanh Hóa. Trích dẫn đề KSCL Toán lớp 12 lần 2 năm 2020 – 2021 trường Quảng Xương 2 – Thanh Hóa : + Một xí nghiệp chế biến sữa bò muốn sản xuất lon đựng sữa có dạng hình trụ bằng thiếc có thể tích không đổi. Để giảm giá một lon sữa khi bán ra thị trường người ta cần chế tạo lon sữa có kích thước sao cho ít tốn kém vật liệu. Để thỏa mãn yêu cầu đặt ra (diện tích toàn phần bé nhất), người ta phải thiết kế lon sữa thỏa mãn điều kiện nào trong các điều kiện sau: A. Chiều cao bằng 3 lần bán kính của đáy. B. Chiều cao bằng bình phương bán kính của đáy. C. Chiều cao bằng đường kính của đáy. D. Chiều cao bằng bán kính của đáy. + Cho hàm số f(x) liên tục trên R và đồ thị hàm số y f x cắt trục hoành tại các điểm có hoành độ lần lượt là a, b, 0, c (a < b < c) (như hình bên dưới). Gọi S là tập hợp tất cả các giá trị thực của tham số m sao cho giá trị lớn nhất của hàm số 2 g x f x m trên a c bằng 2021. Tổng tất cả các phần tử của S bằng? + Cho hàm số bậc bốn y f x có đồ thị là đường cong (như hình vẽ bên dưới). Biết hàm số đạt cực trị tại ba điểm 1 2 3 x x x theo thứ tự lập thành một cấp số cộng có công sai là 2. Gọi 1 S là diện tích phần gạch chéo, 2 S là diện tích phần tô đậm. Tỉ số 1 2 S S bằng?
Đề KSCL lớp 12 môn Toán năm 2020 2021 trường chuyên Lê Hồng Phong Nam Định
Nội dung Đề KSCL lớp 12 môn Toán năm 2020 2021 trường chuyên Lê Hồng Phong Nam Định Bản PDF Sáng thứ Hai ngày 03 tháng 05 năm 2021, trường THPT chuyên Lê Hồng Phong, tỉnh Nam Định tổ chức kỳ thi khảo sát chất lượng lớp 12 môn Toán năm học 2020 – 2021. Đề KSCL Toán lớp 12 năm 2020 – 2021 trường chuyên Lê Hồng Phong – Nam Định mã đề 752 gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề KSCL Toán lớp 12 năm 2020 – 2021 trường chuyên Lê Hồng Phong – Nam Định : + Có bao nhiêu số phức z với phần thực là số nguyên thỏa mãn là số ảo? + Xét điểm M có hoành độ là số nguyên thuộc đồ thị (C). Tiếp tuyến của đồ thị (C) tại điểm M cắt đường tiệm cận ngang của (C) tại điểm A. Hỏi có bao nhiêu điểm M thỏa mãn điều kiện A cách gốc tọa độ một khoảng cách nhỏ hơn 2 10. + Xét hình chóp S.ABC có đáy là tam giác đều cạnh bằng 2, SA vuông góc với mặt phẳng chứa đáy. Gọi M là trung điểm của AB và p là góc giữa đường thẳng SM và mặt phẳng (SBC). Biết rằng sin p, tìm giá trị lớn nhất của thể tích khối chóp S.ABC.
Đề KSCL học kì 1 (HK1) lớp 12 môn Toán năm 2020 2021 trường chuyên Đại học Vinh Nghệ An
Nội dung Đề KSCL học kì 1 (HK1) lớp 12 môn Toán năm 2020 2021 trường chuyên Đại học Vinh Nghệ An Bản PDF Đề KSCL học kỳ 1 Toán lớp 12 năm 2020 – 2021 trường chuyên Đại học Vinh – Nghệ An được biên soạn theo dạng đề thi 100% trắc nghiệm, đề gồm 06 trang với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án. Trích dẫn đề KSCL học kỳ 1 Toán lớp 12 năm 2020 – 2021 trường chuyên Đại học Vinh – Nghệ An : + Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với (ABC). Tâm của mặt cầu ngoại tiếp hình chóp S.ABC là: A. Trung điểm của SA. B. Trung điểm của SC. C. Trung điểm của SB. D. Trung điểm của AC. + Một nguồn âm đẳng hướng phát ra từ điểm O. Mức cường độ âm tại điểm M cách O một khoảng R được tính bởi công thức LM = log k/R2 (Ben), với k > 0 là hằng số. Biết điểm O thuộc đoạn thẳng AB và mức cường độ âm tại A và B lần lượt là LA = 4,3 (Ben) và LB = 5 (Ben). Mức cường độ âm tại trung điểm của AB bằng (làm tròn đến hai chữ số thập phân). + Mỗi mặt của hình bát diện đều là: A. Hình vuông. B. Tam giác đều. C. Bát giác đều. D. Ngũ giác đều.
Đề KSCL giữa học kì 1 (HK1) lớp 12 môn Toán năm 2018 2019 trường THPT Bùi Thị Xuân TT. Huế
Nội dung Đề KSCL giữa học kì 1 (HK1) lớp 12 môn Toán năm 2018 2019 trường THPT Bùi Thị Xuân TT. Huế Bản PDF Đề KSCL giữa HK1 Toán lớp 12 năm 2018 – 2019 trường THPT Bùi Thị Xuân – TT. Huế mã đề 001 gồm 2 trang với 24 câu hỏi trắc nghiệm khách quan (chiếm 8 điểm) và 1 bài toán tự luận (chiếm 2 điểm), yêu cầu học sinh hoàn thành đề thi trong thời gian 45 phút, đây là kỳ thi được tổ chức định kỳ tại các trường nhằm giúp giáo viên và nhà trường đánh giá được chất lượng học tập của mỗi học sinh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề KSCL giữa HK1 Toán lớp 12 năm 2018 – 2019 trường THPT Bùi Thị Xuân – TT. Huế : + Gọi A, B là hai điểm cực trị của đồ thị hàm số y = f(x) = x^3 – 3x^2 + m với m là tham số thực khác 0. Tìm tất cả các giá trị thực của tham số m để trọng tâm tam giác OAB thuộc đường thẳng 3x + 3y – 8 = 0. + Cho hai hàm số f(x) = (2x + 1)/(x + 1) và g(x) = (ax + 1)/(x + 2) với a khác 1/2. Tìm tất cả các giá trị thực dương của a để các tiệm cận của hai đồ thị tạo thành một hình chữ nhật có diện tích là 4. File WORD (dành cho quý thầy, cô):