Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chuyên đề lớp 11 môn Toán lần 2 năm 2019 2020 trường Ngô Gia Tự Vĩnh Phúc

Nội dung Đề thi chuyên đề lớp 11 môn Toán lần 2 năm 2019 2020 trường Ngô Gia Tự Vĩnh Phúc Bản PDF Ngày … tháng 01 năm 2019, trường THPT Ngô Gia Tự – Vĩnh Phúc tổ chức kỳ thi kiểm tra chuyên đề môn Toán lớp 11 lần thứ hai năm học 2019 – 2020. Đề thi chuyên đề Toán lớp 11 lần 2 năm 2019 – 2020 trường Ngô Gia Tự – Vĩnh Phúc gồm có 02 trang với 12 câu trắc nghiệm và 05 câu tự luận, thời gian làm bài 120 phút, đề thi có đáp án. Trích dẫn đề thi chuyên đề Toán lớp 11 lần 2 năm 2019 – 2020 trường Ngô Gia Tự – Vĩnh Phúc : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi d là giao tuyến của hai mặt phẳng (SAB) và (SCD). Khi đó khẳng định nào sau đây là đúng? A. Đường thẳng d đi qua S và song song với AB và CD. B. Đường thẳng d đi qua S và song song với AD và BC. C. Đường thẳng d trùng với đường thẳng SO. D. Đường thẳng d nằm trong mặt phẳng ABCD. + Mệnh đề nào sau đây sai? A. Hàm số y = cos x có tập xác định là R. B. Hàm số y = tan x là hàm số lẻ. C. Hàm số y = sin x tuần hoàn với chu kỳ T = 2pi. D. Hàm số y = cot x là hàm số chẵn. [ads] + Cho hình chóp S.ABCD có đáy là hình bình hành ABCD tâm O. Gọi M, N, P lần lượt là trung điểm các cạnh SA, SD, BC. a) Tìm giao điểm của đường thẳng MC với mặt phẳng (SBD). b) Tìm giao tuyến d của hai mặt phẳng (MNO) và (SCD). Chứng minh d song song với mặt phẳng (SBC). + Các mặt của một con xúc sắc được đánh số từ 1 đến 6. Người ta gieo con xúc sắc 3 lần liên tiếp và nhân các con số nhận được trong mỗi lần gieo với nhau. Tính xác suất để tích thu được là một số chia hết cho 6. + Biết tổng của ba hệ số của ba số hạng thứ nhất, thứ hai, thứ ba trong khai triển (x^3 + 1/x^2)^n bằng 11. Tìm hệ số của số hạng chứa x2.

Nguồn: sytu.vn

Đọc Sách

Đề KSCL đội tuyển HSG Toán 11 năm 2018 2019 trường Yên Lạc 2 Vĩnh Phúc
Đề KSCL đội tuyển HSG Toán 11 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc được biên soạn nhằm giúp nhà trường và giáo viên kiểm tra lại năng lực môn Toán của học sinh khối 11 nằm trong đội tuyển học sinh giỏi Toán 11 của nhà trường sau quá trình bồi dưỡng, đây là kỳ thi cần thiết, cũng như là bước chuẩn bị sau cùng cho các em trước khi tham dự kỳ thi học sinh giỏi Toán 11 tỉnh Vĩnh Phúc. Đề KSCL đội tuyển HSG Toán 11 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc được biên soạn theo hình thức tự luận với 08 bài toán, bao quát toàn diện các kiến thức Toán 11 mà các em đã được ôn tập trước đó, thời gian làm bài thi môn Toán là 180 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề KSCL đội tuyển HSG Toán 11 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc : + Cho các chữ số 0; 1; 2; 3; 4; 5; 6; 7. Từ 8 chữ số trên lập được bao nhiêu số tự nhiên có 8 chữ số đôi một khác nhau sao cho tổng 4 chữ số đầu bằng tổng 4 chữ số cuối. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình thang có AD = 2a, AB = BC = CD = a, góc BAD = 60 độ, SA vuông góc với đáy và SA = a√3. M và I là hai điểm thỏa mãn 3MI + MS = 0, 4IS + 3ID = 0. Mặt phẳng (AMI) cắt SC tại N. a) Chứng minh đường thẳng SD vuông góc với mặt phẳng (AMI). b) Chứng minh góc ANI = 90 độ, góc AMI = 90 độ. c) Tính diện tích của thiết diện tạo bởi mặt phẳng (AMI) và hình chóp S.ABCD. + Cho tam giác ABC có BC = a, AB = c, AC = b. Biết góc BAC = 90 độ và a, b√2/3, c theo thứ tự tạo thành cấp số nhân. Tính số đo góc B, C.
Đề KSCL đội tuyển HSG Toán 11 năm 2017 - 2018 trường Minh Châu - Hưng Yên
Đề KSCL đội tuyển HSG Toán 11 năm 2017 – 2018 trường Minh Châu – Hưng Yên gồm 1 trang với 9 bài toán tự luận, thí sinh làm bài trong 120 phút, không kể thời gian phát đề, đề thi có lời giải chi tiết . Các dạng toán trong đề KSCL đội tuyển HSG Toán 11 : + Giải phương trình lượng giác + Hàm số và các bài toán liên quan + Tính giới hạn + Nhị thức Newton + Giải hệ phương trình vô tỉ + Phương pháp tọa độ trong mặt phẳng Oxy + Hình học không gian + Tìm công thức số hạng tổng quát của dãy số
Đề KSCL đội tuyển HSG Toán 11 năm 2017 - 2018 trường THPT Yên Lạc 2 - Vĩnh Phúc
Đề KSCL đội tuyển HSG Toán 11 năm 2017 – 2018 trường THPT Yên Lạc 2 – Vĩnh Phúc gồm 1 trang với 8 bài toán tự luận, thời gian làm bài 180 phút, không kể thời gian phát đề, nội dung đề thi bao gồm các chủ đề: lượng giác, cấp số cộng và cấp số nhân, nhị thức Newton, xác suất, giới hạn, hình học tọa độ trong mặt phẳng Oxy, vectơ, hình học không gian, min – max, đề thi HSG Toán 11 có lời giải chi tiết . Trích dẫn đề KSCL đội tuyển HSG Toán 11 năm 2017 – 2018 : + Một tứ giác có bốn góc tạo thành một cấp số nhân và số đo góc lớn nhất gấp 8 lần số đo góc nhỏ nhất. Tính số đo các góc của tứ giác trên. + Cho hình đa giác đều H có 24 đỉnh, chọn ngẫu nhiên 4 đỉnh của hình H. Tính xác suất để 4 đỉnh chọn được tạo thành một hình chữ nhật không phải là hình vuông? [ads] + Cho hình chóp S.ABCD có đáy là hình vuông cạnh a và các cạnh bên đều bằng a. Gọi M là điểm nằm trên SB sao cho vtSM = 1/3.vtSB. a. Gọi (P) là mặt phẳng chứa CM và song song với SA. Tính theo a diện tích thiết diện tạo bởi (P) và hình chóp S.ABCD. b. E là một điểm thay đổi trên cạnh AC. Xác định vị trí điểm E để ME vuông góc với CD.
Đề khảo sát lần 2 Toán 11 năm 2023 - 2024 trường THPT Kẻ Sặt - Hải Dương
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi khảo sát chất lượng lần 2 môn Toán 11 năm học 2023 – 2024 trường THPT Kẻ Sặt, tỉnh Hải Dương. Đề thi được biên soạn theo định dạng trắc nghiệm mới nhất, với cấu trúc gồm 03 phần: Câu trắc nghiệm nhiều phương án lựa chọn; Câu trắc nghiệm đúng sai; Câu trắc nghiệm trả lời ngắn. Đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát lần 2 Toán 11 năm 2023 – 2024 trường THPT Kẻ Sặt – Hải Dương : + Có 2 hộp đựng các viên bi. Hộp thứ nhất chứa 3 viên bi trắng, 5 viên bi đỏ và 6 viên bi xanh. Hộp thứ hai chứa 7 viên bi trắng, 6 viên bi đỏ và 5 viên bi xanh (các viên bi kích thước như nhau). Chọn ngẫu nhiên mỗi hộp một viên bi. a) Số phần tử của không gian mẫu là 270. b) Có 21 cách để hai viên bi lấy ra đều là màu trắng. c) Xác xuất để chọn được 2 viên bi trong đó một viên màu đỏ, một viên màu xanh là 1 7. d) Xác xuất để chọn được 2 bi khác màu là 9 28. + Ruồi giấm được thả vào bình sữa nửa lít cùng với một quả chuối (để làm thức ăn) và cây men (để làm thức ăn và để kích thích đẻ trứng). Giả sử rằng số lượng ruồi đục quả sau t ngày được cho bởi công thức. Mất bao lâu để trong bình có 180 con ruồi giấm? + Cả hai xạ thủ cùng bắn vào bia. Xác suất người thứ nhất bắn trúng bia là 0,8; người thứ hai bắn trúng bia là 0,7. Tính xác suất để có ít nhất một người bắn trúng bia.