Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Ninh Bình

Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Ninh Bình Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2020 - 2021 sở GD&ĐT Ninh Bình Đề tuyển sinh môn Toán (chuyên) năm 2020 - 2021 sở GD&ĐT Ninh Bình Bạn đã sẵn sàng thử thách bản thân với đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 của sở GD&ĐT Ninh Bình chưa? Đề thi gồm 5 bài toán dạng tự luận đầy hấp dẫn, sẽ đưa bạn vào thế giới của kiến thức và logic Toán học. Thời gian làm bài thi là 150 phút, đủ để bạn thể hiện khả năng và kiến thức của mình. Kì thi sẽ diễn ra vào thứ Bảy ngày 18 tháng 07 năm 2020, cùng chờ đón những phút giây căng thẳng và hồi hộp để thử sức mình nhé! Một trong những bài toán thú vị trong đề thi là bài toán về đường tròn và các điểm P, A, B, C, D, N, Q, O. Hãy thử sức với các yêu cầu "nhạy cảm" như chứng minh tứ giác AOBQ nội tiếp đường tròn, chứng minh ANP = BNP và bốn điểm O, D, C, N cùng nằm trên một đường tròn, hay chứng minh rằng đường trung trực của đoạn ON luôn đi qua một cố định khi P di động trên đoạn thẳng AB. Bên cạnh đó, đề thi cũng đưa ra các bài toán khác như tìm số nguyên n để n2 + 2022 là số chính phương, và tìm m sao cho phương trình x2 − 2mx + 2m − 1 = 0 có hai nghiệm phân biệt x1, x2 thỏa mãn 4x1 = x22. Đừng bỏ lỡ cơ hội thử thách bản thân và khám phá những bí mật của Toán học thông qua đề thi tuyển sinh môn Toán (chuyên) năm 2020 - 2021 sở GD&ĐT Ninh Bình. Hãy tự tin và cố gắng hết mình, thành công sẽ đến với những ai không ngần ngại khó khăn!

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh THPT công lập năm học 2017 2018 môn Toán sở GD và ĐT Bến Tre
Nội dung Đề thi tuyển sinh THPT công lập năm học 2017 2018 môn Toán sở GD và ĐT Bến Tre Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT công lập năm học 2017-2018 môn Toán sở GD và ĐT Bến Tre Đề thi tuyển sinh THPT công lập năm học 2017-2018 môn Toán sở GD và ĐT Bến Tre Trận đấu sôi động giữa học sinh và bài toán đã bắt đầu. Đề thi tuyển sinh lớp 10 THPT công lập năm học 2017 - 2018 môn Toán sở GD và ĐT Bến Tre vừa được phát. Hàng loạt bài toán hấp dẫn, đầy thử thách đã được đặt ra. Bài toán đầu tiên yêu cầu giải phương trình \( x^2 - 2(m - 1)x - (2m + 1) = 0 \) với \( m = 2 \). Học sinh cần tìm ra nghiệm của phương trình và làm rõ tính chất của nó với mọi giá trị của \( m \). Với sự khéo léo và kiến thức vững chắc, học sinh sẽ có thể vượt qua thử thách này một cách dễ dàng. Bài toán tiếp theo đưa học sinh vào tế bào của parabol và đường thẳng. Việc vẽ đồ thị của parabol và đường thẳng trên mặt phẳng tọa độ, tìm tọa độ giao điểm của chúng không chỉ đòi hỏi sự kiên nhẫn mà còn sự logic và khả năng suy luận. Đề thi này không chỉ là cơ hội để học sinh thể hiện kiến thức mà còn để họ rèn luyện khả năng tư duy, xử lý vấn đề và tự tin trước những thách thức. Mỗi bài toán là một cửa sổ mở ra thế giới kiến thức, chờ đợi những trí tuệ sáng tạo và nhiệt huyết của các bạn trẻ.
Đề thi tuyển sinh năm học 2017 2018 môn Toán trường TH Cao Nguyên Đắk Lắk
Nội dung Đề thi tuyển sinh năm học 2017 2018 môn Toán trường TH Cao Nguyên Đắk Lắk Bản PDF - Nội dung bài viết Đề thi tuyển sinh năm học 2017 - 2018 môn Toán trường TH Cao Nguyên Đắk Lắk Đề thi tuyển sinh năm học 2017 - 2018 môn Toán trường TH Cao Nguyên Đắk Lắk Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường TH Cao Nguyên - Đắk Lắk bao gồm 4 bài toán tự luận với lời giải chi tiết. Trong số các bài toán trong đề thi, có một số bài như sau: 1. Bài toán về đường tròn: Có đường tròn tâm O, vẽ hai tiếp tuyến AB và AC từ điểm A nằm ngoài đường tròn. Gọi E là giao điểm của OA và BC. Phần a của bài toán yêu cầu chứng minh tứ giác ABOC nội tiếp, phần b yêu cầu chứng minh một mối liên hệ giữa các độ dài đoạn thẳng trong tứ giác, và phần c yêu cầu chứng minh một số tính chất góc và tam giác. 2. Bài toán về tam giác: Cho tam giác ABC có hai đường phân giác trong BD và CE. Điểm M bất kì trên đoạn DE. Gọi H, K, L lần lượt là hình chiếu của M trên BC, CA, AB. Bài toán yêu cầu chứng minh một mối liên hệ giữa các độ dài đoạn thẳng trong tam giác. Các bài toán trong đề thi này giúp cho học sinh rèn luyện kỹ năng tư duy logic, khả năng giải quyết vấn đề và áp dụng kiến thức Toán vào thực tế. Qua đó, giúp học sinh nắm vững kiến thức cơ bản và phát triển khả năng suy luận, giải quyết vấn đề.
Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Lạng Sơn
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Lạng Sơn Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Lạng Sơn Đề thi tuyển sinh THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Lạng Sơn Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán của sở GD và ĐT Lạng Sơn bao gồm 4 bài toán tự luận, với lời giải chi tiết dưới đây. Trong đó có bài toán sau: Cho nửa đường tròn tâm O, đường kính AB. Dựng tiếp tuyến Ax (Ax và nửa đường tròn cùng thuộc nửa mặt phẳng bờ AB). C là một điểm nằm trên nửa đường tròn (C không trùng A và B), dựng tiếp tuyến Cy của nửa đường tròn (O) cắt Ax tại D. Kẻ CH vuông góc với AB (H thuộc AB), BD cắt (O) tại điểm thứ hai là K và cắt CH tại M. Gọi J là giao điểm của OD và AC. Ta có: a) Chứng minh rằng tứ giác AKMH nội tiếp được một đường tròn. b) Chứng minh rằng tứ giác CKJM nội tiếp được một đường tròn (O1). c) Chứng minh DJ là tiếp tuyến của đường tròn (O1). Qua bài toán trên, ta cần sử dụng kiến thức về hình học định lí và kỹ năng suy luận để giải quyết vấn đề. Hãy cẩn thận và tỉ mỉ với từng bước giải, để đạt được kết quả chính xác nhất.
Đề thi thử vào lớp 10 môn Toán 2018 trường Archimedes Academy Hà Nội lần 6
Nội dung Đề thi thử vào lớp 10 môn Toán 2018 trường Archimedes Academy Hà Nội lần 6 Bản PDF - Nội dung bài viết Đề Thi Thử Vào Lớp 10 Môn Toán 2018 Trường Archimedes Academy Hà Nội Lần 6 Đề Thi Thử Vào Lớp 10 Môn Toán 2018 Trường Archimedes Academy Hà Nội Lần 6 Đề thi thử vào lớp 10 môn Toán năm học 2017 – 2018 trường THCS Archimedes Academy – Hà Nội lần thứ 6 đã được tổ chức với nhiều bài toán thú vị. Đề thi gồm 5 bài toán tự luận, và thí sinh được phép làm bài trong khoảng thời gian 120 phút. Nội dung các bài toán trong đề bao gồm các chủ đề đa dạng như tính toán và rút gọn biểu thức, giải bài toán bằng cách lập phương trình hoặc hệ phương trình, biện luận hệ phương trình, bài toán tương giao giữa đường thẳng và parabol, bài toán về đường tròn, bài toán min – max. Kỳ thi đã diễn ra vào ngày 21 tháng 4 năm 2018, và đề thi đã được công bố lời giải chi tiết. Trích dẫn một số bài toán từ đề thi thử vào lớp 10 môn Toán: 1. Một ô tô di chuyển từ điểm A đến B cách nhau 260km. Sau khi đã đi được 120km với vận tốc dự định, xe tăng vận tốc thêm 10km/h trên quãng đường còn lại. Hãy tính vận tốc dự định của ô tô biết rằng xe đến đích B sớm hơn thời gian dự định 20 phút. 2. Cho hệ phương trình x + 2y = 3, x + my = 1 (với m là tham số). Tìm giá trị nguyên của m để hệ phương trình có nghiệm duy nhất với x và y là số nguyên. 3. Đưa ra parabol (P): y = x^2 và đường thẳng (d): y = -2mx – 4m (với m là tham số). a) Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt A, B. b) Giả sử x1, x2 là hoành độ của A, B. Tìm m để |x1| + |x2| = 3.