Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi vào 10 chuyên môn Toán (chuyên) năm 2021 2022 sở GD ĐT Kiên Giang

Nội dung Đề thi vào 10 chuyên môn Toán (chuyên) năm 2021 2022 sở GD ĐT Kiên Giang Bản PDF - Nội dung bài viết Đề thi vào 10 chuyên môn Toán (chuyên) năm 2021 - 2022 sở GD&ĐT Kiên Giang Đề thi vào 10 chuyên môn Toán (chuyên) năm 2021 - 2022 sở GD&ĐT Kiên Giang Sytu xin giới thiệu đến quý thầy cô giáo và các em học sinh đề thi vào lớp 10 chuyên môn Toán (chuyên) năm 2021 - 2022 của sở GD&ĐT Kiên Giang. Đề thi bao gồm đáp án và lời giải chi tiết, kỳ thi sẽ diễn ra vào ngày 05 tháng 06 năm 2021. Bạn có thể tham khảo một số câu hỏi trong đề thi như sau: Câu 1: Có bốn căn phòng nằm liên tiếp nhau, thành một hàng ngang. Con chuột mỗi ngày trốn trong một căn phòng. Chú mèo tìm cách bắt con chuột. Mỗi tối, chú mèo vào một căn phòng, nếu con chuột đang trốn ở đó thì sẽ bị bắt. Chú mèo có thể đảm bảo chắc chắn sẽ bắt được con chuột sau tối đa bốn tối hay không? Vì sao? Câu 2: Cho hình vuông ABCD có cạnh bằng 8, trên cạnh BC lấy điểm M sao cho BM = 5. Gọi N là giao điểm của đường thẳng CD và đường thẳng vuông góc với AM tại A. Gọi I là trung điểm của MN. Hãy tính độ dài đoạn thẳng DI. Câu 3: Cho hai đường tròn O1 và O2 cắt nhau tại điểm A, sao cho góc OAO1O2 là góc tù. Tiếp tuyến tại A của O1 cắt O2 tại B và tiếp tuyến tại A của O2 cắt O1 tại D. Chứng minh rằng đường thẳng AK song song với đường thẳng BL, với K và L được chọn như trong đề. Chứng minh tứ giác ABCD là tứ giác nội tiếp. Bạn có thể tải file WORD chứa đầy đủ nội dung đề thi của sở GD&ĐT Kiên Giang để làm bài tập và ôn tập.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh vào 10 chuyên môn Toán cơ sở năm 2018 - 2019 sở GDĐT Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 chuyên môn Toán cơ sở năm học 2018 – 2019 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 01 tháng 06 năm 2018; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề Toán tuyển sinh lớp 10 năm 2018 - 2019 sở GD và ĐT Bình Phước (đề chung)
Đề Toán tuyển sinh lớp 10 năm 2018 – 2019 sở GD và ĐT Bình Phước (đề chung cho tất cả các thí sinh) được biên soạn theo hình thức tự luận với 5 bài toán, thí sinh làm bài trong thời gian 120 phút (không kể thời gian phát đề), kỳ thi được diễn ra vào ngày 01/06/2018 nhằm đánh giá, phân loại năng lực học sinh khối 9, từ đó các trường THPT thuộc sở GD và ĐT Bình Phước có căn cứ để đưa ra mức điểm tuyển sinh phù hợp, tuyển chọn các em học sinh phù hợp với tiêu chí để chuẩn bị cho năm học mới, đề thi có lời giải chi tiết .
Đề Toán tuyển sinh lớp 10 năm 2018 - 2019 sở GD và ĐT Bình Phước (đề chuyên)
Đề Toán tuyển sinh lớp 10 năm 2018 – 2019 sở GD và ĐT Bình Phước (đề dành cho thí sinh thi vào trường chuyên) được biên soạn nhằm đánh giá năng lực học sinh khối 9, từ đó các trường THPT chuyên thuộc sở GD&ĐT Bình Phước có căn cứ tuyển sinh vào lớp 10 để chuẩn bị cho năm học mới, đề gồm 1 trang với 6 bài toán tự luận, thí sinh có 120 phút để hoàn thành đề thi, kỳ thi được tổ chức vào ngày 03/06/2018, đề thi có lời giải chi tiết . Trích dẫn đề Toán tuyển sinh lớp 10 năm 2018 – 2019 sở GD và ĐT Bình Phước : + Xét các số thực a, b, c với b ≠ a + c sao cho phương trình bậc hai ax^2 + bx + c = 0 có hai nghiệm thực m, n thỏa mãn 0 ≤ m, n ≤ 1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức M = [(a – b)(2a – c)]/[a(a – b + c)]. [ads] + Tìm tất cả các số nguyên tố p sao cho 16p + 1 là lập phương của số nguyên dương. + Cho Parabol (P): y = 1/2.x^2 và đường thẳng (d): y = (m + 1)x – m^2 – 1/2 (m là tham số). Với giá trị nào của m thì đường thẳng (d) cắt Parabol (P) tại hai điểm A(x1;y1), B(x2;y2) sao cho biểu thức T = y1 + y2 – x1.x2 đạt giá trị nhỏ nhất.
Đề Toán tuyển sinh lớp 10 THPT chuyên 2018 - 2019 sở GD và ĐT Nam Định (đề chung)
Đề Toán tuyển sinh lớp 10 THPT chuyên 2018 – 2019 sở GD và ĐT Nam Định (đề chung dành cho tất cả các thí sinh) được biên soạn theo hình thức tự luận với 5 bài toán, thí sinh làm bài trong thời gian 120 phút, đề nhằm tuyển chọn các em học sinh lớp 9 có năng khiếu môn Toán vào học tại các trường THPT chuyên tại tỉnh Nam Định, đề thi có lời giải chi tiết .