Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề nguyên lý cực hạn - Huỳnh Kim Linh

Tài liệu gồm 25 trang, được biên soạn bởi thầy giáo Huỳnh Kim Linh (trường THPT Chuyên Lê Quý Đôn, tỉnh Khánh Hòa), hướng dẫn sử dụng nguyên lý cực hạn trong giải quyết các bài toán Hình học, Đại số, Số học. Lời giới thiệu : Tổ hợp là một lĩnh vực không thể thiếu trong Toán học, nó thường xuyên xuất hiện trong các kì thi học sinh giỏi các cấp. Khác với các bài toán trong lĩnh vực Giải tích, Đại số, Lượng giác. các bài toán Tổ hợp thường liên quan đến các đối tượng là các tập hợp hữu hạn. Chính vì thế các bài toán này thường mang những nét đặc trưng riêng của Toán học rời rạc. Nguyên lí cực hạn hay còn gọi là nguyên lí khởi nguồn cực hạn có phát biểu khá đơn giản: Một tập hợp hữu hạn (khác rỗng) các số thực bất kì đều có phần tử lớn nhất và phần tử nhỏ nhất. Nhờ có nguyên lí này ta có thể xét các phần tử của một đại lượng nào đó có giá trị lớn nhất hoặc giá trị nhỏ nhất, chẳng hạn: – Xét đoạn thẳng lớn nhất (nhỏ nhất) trong một số hữu hạn đoạn thẳng. – Xét góc lớn nhất (nhỏ nhất) trong một số hữu hạn góc. – Xét đa giác có diện tích hoặc chu vi lớn nhất (nhỏ nhất) trong một hữu hạn đa giác. – Xét khoảng cách lớn nhất (nhỏ nhất) trong một số hữu hạn khoảng cách giữa hai điểm hoặc khoảng cách từ một điểm đến một khoảng cách. – Xét các điểm là đầu mút của một đoạn thẳng, xét các điểm ở phía trái nhất hoặc ở phía phải nhất của đoạn thẳng. Chúng ta sẽ tìm hiểu về những ứng dụng của phương pháp này trong các bài toán Hình học, Đại số, Số học. Trong Hình học, chúng ta sẽ áp dụng vào các Đại lượng đa dạng như độ dài các cạnh, đại lượng góc, khoảng cách đoạn thẳng. Còn trong Đại số và Số học, Đại lượng cực hạn là số nhỏ nhất, số lớn nhất. Nội dung : Phần 1. MỘT SỐ VÍ DỤ MỞ ĐẦU. Phần 2. NGUYÊN LÍ CỰC HẠN TRONG HÌNH HỌC. 2.1. Góc lớn nhất hoặc góc nhỏ nhất. 2.2. Khoảng cách lớn nhất hoặc nhỏ nhất. 2.3. Diện tích và chu vi lớn nhất hoặc nhỏ nhất. 2.4. Bao lồi và đường thẳng tựa. 2.5. Bài tập. Phần 3. SỬ DỤNG NGUYÊN LÍ CỰC HẠN TRONG ĐẠI SỐ VÀ SỐ HỌC. 3.1. Các bài toán số học. 3.2. Các bài toán đại số. 3.3. Bài tập. Phần 4. NGUYÊN LÍ THỨ TỰ TRONG TẬP SỐ TỰ NHIÊN. 4.1 Nguyên lí thứ tự. 4.2.Nguyên lí quy nạp toán học. 4.3 Sự tương đương giữa hai nguyên lí. Dù cố gắng nhiều nhưng chuyên đề không tránh khỏi sai sót, rất mong nhận được sự đóng góp từ các thầy, cô giáo và các em học sinh. Hi vọng rằng chuyên đề này sẽ giúp các bạn bớt khó khăn khi nghiên cứu Tổ hợp, đồng thời giúp các bạn tìm thấy vẻ đẹp sáng tạo của Toán học khi giải loại toán này. Cuối cùng, tác giả xin chân thành cảm ơn các bạn với những đóng góp ý kiến bổ ích.

Nguồn: toanmath.com

Đọc Sách

Sử dụng định lý Ceva và Menelaus trong bài toán chứng minh đồng quy, thẳng hàng
Tài liệu gồm 18 trang, hướng dẫn phương pháp sử dụng định lý Ceva và Menelaus trong bài toán chứng minh đồng quy, thẳng hàng; tài liệu được sử dụng để bồi dưỡng học sinh giỏi Toán bậc THPT. Phần 1 . Đặt vấn đề. Các bài toán Hình học phẳng là một phần quan trọng trong các chuyên đề toán học và đồng thời nó cũng là một mảng khó trong chương trình toán THPT chuyên. Chính vì thế trong các kì thi học sinh giỏi quốc gia, thi Olympic Toán quốc tế và khu vực, những bài toán Hình học phẳng cũng hay được đề cập và thường được xem là bài toán khó của kì thi. Trong các dạng toán liên quan đến Hình học phẳng thì bài toán đồng quy, thẳng hàng vừa được coi là bài toán quen và lạ, vừa dễ vừa khó. Bởi bài toán đồng quy, thẳng hàng đã được làm quen từ khi các em bắt đầu học Hình học cho đến chúng ta cảm thấy rất quen thuộc với Hình hoc nó vẫn hiện hữu. Nó lại là bài toán có tần suất xuất hiện nhiều nhất trong tất cả các kì thi HSG các cấp với rất nhiều hình thái khác nhau, mức độ khác nhau thậm chí là rất khó. Các em học sinh bậc Trung học phổ thông thường gặp một số khó khăn khi tiếp cận các dạng toán liên quan đến bài toán đồng quy thẳng hàng nói riêng và bài toán Hình học phẳng nói chung bởi không biết phải bắt đầu từ đâu và khó khăn khi định hướng vẽ hình phụ. Cái khó của các em chính là không nắm được tường tận các phương pháp giải quyết từ đó dẫn đến khó khăn trong khâu định hướng. Để hiểu và vận dụng tốt một số dạng toán cơ bản và vận dụng kiến thức Hình học phẳng vào giải toán đồng quy thẳng hàng thì thông thường học sinh phải có kiến thức nền tảng Hình học tương đối đầy đủ và chắc chắn trên tất cả các lĩnh vực của nó. Trong số rất nhiều các phương pháp để giải quyết bài toán đồng quy, thẳng hàng tác giả lựa chọn các phương pháp “Sử dụng định lý Ceva và Menelaus” để giải quyết lớp bài toán trên. Đây là phương pháp khá cổ điển và đặc trưng cho lớp bài toán này. Phần 2 . ĐỊNH LÝ CEVA VÀ MENELAUS TRONG BÀI TOÁN CHỨNG MINH ĐỒNG QUY, THẲNG HÀNG. 1 Lý thuyết. 1.1. Định lí Ceva. 1.2. Định lí Ceva dạng lượng giác (Ceva sin). 1.3 Định lí Menelaus. 2 Bài tập minh họa. 3 Bài tập tương tự. TÀI LIỆU THAM KHẢO
Ứng dụng hàng điểm điều hòa trong bài toán đường phân giác và bài toán đồng quy, thẳng hàng
Tài liệu gồm 29 trang, được biên soạn bởi thầy giáo Nguyễn Bá Hoàng (trường THPT chuyên Lào Cai, tỉnh Lào Cai), hướng dẫn phương pháp ứng dụng hàng điểm điều hòa trong bài toán đường phân giác và bài toán đồng quy, thẳng hàng; tài liệu được sử dụng để bồi dưỡng học sinh giỏi Toán bậc THPT. A. PHẦN MỞ ĐẦU I. Lý do chọn đề tài: Các bài toán về Hình học phẳng thường xuyên xuất hiện trong các kì thi HSG môn toán và luôn được đánh giá là nội dung khó trong đề thi. Có rất nhiều dạng bài tập về hình học phẳng cùng với sự tương ứng của các công cụ đi cùng, trong đó hàng điểm điều hòa là một trong những công cụ mạnh để giải nhiều lớp bài toán về hình học. Mặc dù là một vấn đề khá quen thuộc của hình học phẳng, kiến thức về nó khá đơn giản và dễ hiểu, tuy nhiên nó có ứng dụng nhiều đối với các bài toán chứng minh vuông góc, đồng quy, thẳng hàng, điểm cố đinh, đường cố định hay các bài toán về tập hợp điểm …. Chính vì thế trong các kì thi học sinh giỏi quốc gia, thi Olympic Toán quốc tế và khu vực, những bài toán có liên quan đến hàng điểm điều hòa thường xuyên được đề cập và thường được xem là những dạng toán hay của kì thi. Chính vì vậy tác giả lựa chọn chuyên đề: “Ứng dụng hàng điểm điều hòa trong bài toán phân giác và đồng quy, thẳng hàng” để thấy được ứng dụng quan trọng của hàng điểm điều hòa đối với khá nhiều dạng bài tập hình học phẳng. Trong chuyên đề tác giả cố gắng tập hợp được các bài toán đặc trưng cho việc sử dụng công cụ hàng điểm điều hòa. II. Mục đích của chuyên đề: Thông qua chuyên đề “Ứng dụng hàng điểm điều hòa trong bài toán phân giác và đồng quy, thẳng hàng” tác giả rất mong muốn nhận được góp ý trao đổi của các bạn đồng nghiệp và các em học sinh. Chúng tôi mong muốn chuyên đề này góp một phần nhỏ để việc ứng dụng hàng điểm điều hòa trong bài toán hình học phẳng đạt hiệu quả cao nhất. Từ đó giúp các em học sinh hiểu rõ hơn về việc sử dụng hàng điểm điều hòa và tăng khả năng vận dụng nó vào giải các bài toán hình học một cách tốt nhất. B. PHẦN NỘI DUNG I. Hệ thống lý thuyết cơ bản về hàng điểm điều hòa. 1. Tỉ số kép của hàng điểm. 2. Hàng điểm điều hòa. 3. Tỉ số kép của chùm đường thẳng – Chùm điều hòa. 4. Tứ giác điều hòa. II. Bài tập áp dụng. Dạng 1: Khai thác bài toán liên quan đến đường phân giác. Dạng 2: Chứng minh đồng quy, thẳng hàng. C. PHẦN KẾT LUẬN Trên đây là một số bài toán về đường phân giác, đồng quy, thẳng hàng sử dụng đến hàng điểm điều hòa. Kiến thức về hàng điểm điều hòa khá dễ hiểu và đơn giản nhưng ứng dụng của nó thì khá nhiều. Thông qua đó giúp học sinh tiếp cận và hình thành kĩ năng sử dụng hàng điểm điều hòa, cũng như lựa chọn được cách giải bài toán phù hợp, tăng thêm tính say mê, tích cực tìm tòi và sáng tạo. Chuyên đề trên nhằm mục đích trao đổi với các thầy cô dạy bộ môn toán về việc sử dụng hàng điểm điều hòa để giải các bài toán hình học phẳng. Do kiến thức còn nhiều hạn chế nên chắc rằng chuyên đề khó tránh khỏi các thiếu sót, chúng tôi mong có sự góp ý của quý thầy cô để chuyên đề được hoàn thiện hơn. Tác giả xin chân thành cảm ơn!
Một số phương pháp giải phương trình hàm và bất phương trình hàm - Bùi Ngọc Diệp
Tài liệu gồm 109 trang, được biên soạn bởi thầy giáo Bùi Ngọc Diệp, hướng dẫn một số phương pháp giải phương trình hàm và bất phương trình hàm qua các kỳ thi Olympic Toán. Hàm số là một trong những đối tượng nghiên cứu trung tâm của Toán sơ cấp. Một trong những chủ đề liên quan đến hàm số thường xuyên xuất hiện trong các kỳ thi chọn học sinh giỏi cấp tỉnh, kỳ thi chọn học sinh giỏi Quốc gia và kỳ thi Olympic toán Quốc tế là giải phương trình hàm, bất phương trình hàm. Đối với các phương trình, bất phương trình đại số trong sách giáo khoa, mục tiêu của chúng ta là tìm các biến chưa biết nhưng đối với phương trình hàm, bất phương trình hàm chúng ta cần phải tìm một “hàm số” thỏa mãn một số điều kiện ràng buộc cho trước của bài toán. Đây là một chủ đề khó. Đừng trước mỗi bài toán thuộc chủ đề này, học sinh phải nắm vững được những kĩ thuật, phương pháp giải, cũng như phải có sự xử lí khéo léo khi đứng trước những tình huống cụ thể. Chúng ta có nhiều phương pháp cũng như hướng tiếp cận khác nhau đối với các bài toán thuộc chủ đề này. Với mục tiêu muốn đóng góp một phần nào đó trong việc hoàn thành một bức tranh tổng thể về các phương pháp giải phương trình hàm và bất phương trình hàm, trong chuyên đề này chúng tôi sẽ giới thiệu tới bạn đọc hai phương pháp thường được sử dụng để giải quyết các bài toán thuộc chủ đề này thông qua các bài toán cụ thể, đó là phương pháp giải tích và phương pháp tổng hợp. Trong từng phương pháp, chúng tôi sẽ đưa ra một hệ thống các bài toán với những lời giải chi tiết, rõ ràng. Hơn nữa, sau mỗi lời giải, chúng tôi ra đưa những nhận xét, phân tích, bình luận để giúp người đọc có một cách nhìn tổng quan hơn về bài toán đó cũng như phương pháp được sử dụng. Mục tiêu của chuyên đề này là giới thiệu phương pháp giải tích và phương pháp tổng hợp với những kĩ thuật đặc trưng của nó thông qua các ví dụ cụ thể thông qua một số bài toán phương trình hàm, bất phương trình đã xuất hiện trong các kỳ thi học sinh giỏi quốc gia và quốc tế. Chuyên đề được bố cục như sau: Trong chương 1, chúng tôi sẽ giới thiệu phương pháp giải tích thông qua hệ thống các bài toán cùng với những kĩ thuật và lưu ý cần thiết khi sử dụng phương pháp này. Trong chương 2, chúng tôi sẽ giới thiệu tới bạn đọc phương pháp tổng hợp thông qua hệ thống gồm mười bài toán khác nhau. Đây là phương pháp thông dụng nhất, nó là sự kết hợp giữa nhiều phương pháp, kĩ thuật khác nhau. Trong chương 3, chúng tôi đưa một số bài toán khác mà phương pháp giải chúng là hai phương pháp nói trên nhưng không kèm theo các nhận xét, phân tích. Trong chương 4, chúng tôi đưa một hệ thống các bài toán không có lời giải dành cho bạn đọc tự luyện tập.
Chuyên đề phương trình hàm đa thức - Nguyễn Phúc Thọ
Chuyên đề phương trình hàm đa thức gồm 22 trang, được biên soạn bởi tác giả Nguyễn Phúc Thọ, tuyển tập các bài toán hay về phương trình hàm đa thức, có đáp án và lời giải chi tiết. Trích dẫn chuyên đề phương trình hàm đa thức – Nguyễn Phúc Thọ : + Tìm tất cả các đa thức P(x) thoả mãn P(a + b) = 6 P(a) + P(b) + 15a 2b 2 (a + b)) (1) Với mọi số phức a và b sao cho a 2 + b 2 = ab. + Tìm đa thức P(x) với hệ số thực, có bậc nhỏ hơn n ∈ N∗. Sao cho tồn tại n số thực đôi một phân biệt là a1, a2, …, an thoả mãn điều kiện với mỗi i, j ∈ {1,2,…,n} ta có |P(ai)− P(aj)| = n|ai − aj|. + Tìm tất cả các đa thức P(x) với hệ số thực và không có nghiệm bội sao cho với mỗi số phức z thì phương trình zP(z) = 1 thoả mãn khi và chỉ khi P(z −1)P(z + 1) = 1.