Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 9 môn Toán năm 2019 2020 phòng GD ĐT Hai Bà Trưng Hà Nội

Nội dung Đề thi học kì 1 (HK1) lớp 9 môn Toán năm 2019 2020 phòng GD ĐT Hai Bà Trưng Hà Nội Bản PDF - Nội dung bài viết Đề thi học kỳ 1 (HK1) lớp 9 môn Toán năm 2019-2020 phòng GD ĐT Hai Bà Trưng Hà Nội Đề thi học kỳ 1 (HK1) lớp 9 môn Toán năm 2019-2020 phòng GD ĐT Hai Bà Trưng Hà Nội Ngày Thứ Ba, 10 tháng 12 năm 2019, Phòng Giáo dục và Đào tạo UBND quận Hai Bà Trưng, thành phố Hà Nội đã tổ chức kỳ thi kiểm tra chất lượng cuối học kỳ 1 môn Toán lớp 9 năm học 2019-2020. Đề thi học kỳ 1 Toán lớp 9 năm 2019-2020 của phòng GD&ĐT Hai Bà Trưng - Hà Nội được biên soạn theo dạng đề tự luận với tổng cộng 5 bài toán, học sinh được 90 phút để hoàn thành bài thi. Trích dẫn đề thi học kì 1 Toán lớp 9 năm 2019-2020 phòng GD&ĐT Hai Bà Trưng - Hà Nội bao gồm các câu hỏi như sau: Bài toán 1: Một cột cờ vuông góc với mặt đất có bóng dài 12m. Tia nắng của mặt trời tạo với mặt đất một góc là 35°. Hỏi chiều cao của cột cờ là bao nhiêu? Bài toán 2: Xác định hàm số bậc nhất y = (m + 1)x + 2 có đồ thị (d) khi m = 0. Đường thẳng (d) song song với đường thẳng y = 2x + 1 khi m bằng bao nhiêu? Tìm giá trị của m để đường thẳng (d) cắt hai trục Ox, Oy tại A và B sao cho diện tích tam giác AOB bằng 2. Bài toán 3: Cho nửa đường tròn tâm O, đường kính AB = 2R. Vẽ tiếp tuyến Ax, By trên nửa mặt phẳng có bờ là AB chứa nửa đường tròn. Từ điểm M thuộc nửa đường tròn, vẽ tiếp tuyến tại M cắt Ax, By lần lượt tại C, D. Chứng minh các điểm A, C, M, O thuộc cùng một đường tròn. Chứng minh AC + BD = CD và tứ giác MEOF là hình chữ nhật. Tìm vị trí của M trên nửa đường tròn sao cho diện tích tứ giác ABDC nhỏ nhất. Đề thi học kỳ 1 Toán lớp 9 năm 2019-2020 phòng GD&ĐT Hai Bà Trưng - Hà Nội là cơ hội để học sinh thử sức và làm quen với dạng đề thi kiểm tra chất lượng trước kì thi chính thức. Đề thi này sẽ giúp học sinh rèn luyện kỹ năng giải bài toán, tư duy logic và cải thiện hiệu suất học tập của mình. Chúc các em học sinh thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Bộ đề ôn tập thi học kỳ 1 Toán 9 năm học 2018 - 2019 sở GD và ĐT Bắc Ninh
THCS. giới thiệu đến thầy, cô và các em bộ đề ôn tập thi học kỳ 1 Toán 9 năm học 2018 – 2019 sở GD và ĐT Bắc Ninh, đây là tuyển tập đề thi học kỳ 1 Toán 9 của sở Giáo dục và Đào tạo Bắc Ninh từ năm 1997 đến nay, các đề đều ở dạng tự luận.
Đề kiểm tra học kỳ 1 Toán 9 năm 2018 - 2019 phòng GD và ĐT Bắc Từ Liêm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo cùng toàn thể các em học sinh lớp 9 đề kiểm tra học kỳ 1 Toán 9 năm 2018 – 2019 phòng GD và ĐT Bắc Từ Liêm – Hà Nội, đề thi nhằm đánh giá lại toàn diện năng lực môn Toán của học sinh lớp 9 sau giai đoạn học kỳ 1 vừa qua, để làm cơ sở cho việc đánh giá, xếp loại học lực, tuyển chọn học sinh giỏi Toán 9. Đề kiểm tra học kỳ 1 Toán 9 năm 2018 – 2019 phòng GD và ĐT Bắc Từ Liêm – Hà Nội gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 90 phút (không tính thời gian giáo viên phát đề). [ads] Trích dẫn đề kiểm tra học kỳ 1 Toán 9 năm 2018 – 2019 phòng GD và ĐT Bắc Từ Liêm – Hà Nội : + Cho hàm số y = (m – 1)x + 3 có đồ thị là đường thẳng (d). 1) Vẽ đường thẳng (d) khi m = 2. 2) Tìm m để đường thẳng (d) song song với đường thẳng y = 2x + 1. 3) Tính khoảng cách từ gốc tọa độ đến đường thẳng được vẽ ở câu 1. + Cho điểm E thuộc nửa đường tròn tâm O, đường kính MN. Kẻ tiếp tuyến tại N của nửa đường tròn tâm O, tiếp tuyến này cắt đường thẳng ME tại D. 1) Chứng minh rằng: ∆MEN vuông tại E. Từ đó chứng minh DE.DM = DN2. 2) Từ O kẻ OI vuông góc với ME (I ∈ ME). Chứng minh rẳng: 4 điểm O; I; D; N cùng thuộc một đường tròn. 3) Vẽ đường tròn đường kính OD, cắt nửa đường tròn tâm O tại điểm thứ hai là A. Chứng minh rằng: DA là tiếp tuyến của nửa đường tròn tâm O. 4) Chứng minh rằng: góc DEA = góc DAM.
Đề kiểm tra học kỳ 1 Toán 9 năm 2017 - 2018 phòng GDĐT Vĩnh Yên - Vĩnh Phúc
Đề kiểm tra học kỳ 1 Toán 9 năm 2017 – 2018 phòng GD&ĐT Vĩnh Yên – Vĩnh Phúc gồm 04 câu trắc nghiệm và 05 câu tự luận, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án + lời giải chi tiết.
Đề kiểm tra học kỳ 1 Toán 9 năm học 2017 - 2018 phòng GD và ĐT Vĩnh Tường - Vĩnh Phúc
Đề kiểm tra học kỳ 1 Toán 9 năm học 2017 – 2018 phòng GD và ĐT Vĩnh Tường – Vĩnh Phúc gồm 4 câu hỏi trắc nghiệm và 4 bài toán tự luận, thời gian làm bài 90 phút, có đáp án và lời giải chi tiết . Trích dẫn đề thi học kỳ 1 Toán 9 : Cho đường tròn (O;R) đường kính AB. Qua A và B vẽ lần lượt hai tiếp tuyến (d) và (d’). Một đường thẳng qua O cắt đường thẳng (d) ở M và (d’) ở P. Từ O kẻ tia Ox vuông góc với MP và cắt (d’) ở N. a) Chứng minh OM = OP và tam giác NMP cân b) Chứng minh MN là tiếp tuyến của (O) c) Chứng minh AM.BN = R^2 d) Tìm vị trí của M để diện tích tứ giác AMNB là nhỏ nhất Giải : a) Xét ΔAMO và ΔBPO có: góc MAO = PBO = 90 độ (Tính chất tiếp tuyến) OA = OB (bán kính) Góc AOM = BOP (2 góc đối đỉnh) Do đó: ΔAMO = ΔBPO (g.c.g), suy ra OM = OP (2 cạnh tương ứng) Xét ΔMNP có: OM = OP (chứng minh trên) NO ⊥ MP (theo giả thiết) Suy ra ON là đường trung tuyến, đồng thời là đường cao của tam giác MNP Vậy tam giác MNP cân tại N Gọi I là hình chiếu của điểm O trên cạnh MN vuông góc OI MN tại I [ads] b) Vì tam giác MNP cân tại N nên góc OMI = OPB (2 góc đáy) Xét tam giác OMI và tam giác OPB có: Góc OIM = OBP = 90 OM = OP (chứng minh trên) Góc OMI OPB (chứng minh trên) Do đó: ΔOMI = ΔOPB (cạnh huyền – góc nhọn) Suy ra OI = OB = R Vì OI ⊥ MN tại I và OI = OB = R nên MN là tiếp tuyến của (O;R) tại I c) Xét ΔAMO và ΔBON có: góc AMO = BON (cùng phụ với góc AOM) Góc MAO = OBN = 90 (Tính chất tiếp tuyến) Do đó: ΔAMO đồng dạng với ΔBON (g.g) Suy ra AM/BO = AO/BN Suy ra AM.BN = AO.BO = R^2 ( Vì OA=OB=R) d) Ta có: MA ⊥ AB (Tính chất tiếp tuyến) NB ⊥ AB (Tính chất tiếp tuyến) Do đó: MA // NB nên AMNB là hình thang vuông Vì AMNB là hình thang vuông nên ta có: S AMNB = (AM + NB).AB/2 Mặt khác: AM = MI (Tính chất 2 tiếp tuyến cắt nhau) BN = NI (Tính chất 2 tiếp tuyến cắt nhau) Do đó: S AMNB = (MI + NI).AB/2 = MN.AB/2 Mà AB = 2R cố định nên AMNB S nhỏ nhất khi MN nhỏ nhất ⇔ MN // AB hay AM = R. Khi đó S AMNB = 2R^2 Vậy để diện tích tứ giác AMNB nhỏ nhất thì MN//AB và AM = R