Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 - 2022 sở GDĐT Cần Thơ

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Cần Thơ; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 05 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Cần Thơ : + Cho parabol (P): y = x2 và đường thẳng (d): y = –2mx – 2m. Tìm tất cả giá trị của tham số m sao cho (d) cắt (P) tại hai điểm phân biệt có hoành độ x1 và x2 thỏa mãn |𝑥1| + |𝑥2| = 2√3. + Lúc 7 giờ, anh Toàn điều khiển một xe gắn máy khởi hành từ thành phố A đến thành phố B. Khi đi được quãng đường, xe bị hỏng nên anh Toàn dừng lại để sửa chữa. Sau 30 phút sửa xe, anh Toàn tiếp tục điều khiển xe gắn máy đó đi đến thành phố B với vận tốc nhỏ hơn vận tốc ban đầu 10 km/h. Lúc 10 giờ 54 phút, anh Toàn đến thành phố B. Biết rằng quãng đường từ thành phố A đến thành phố B là 160 km và vận tốc của xe trên mỗi đoạn đường không đổi. Hỏi anh Toàn dừng xe để sửa chữa lúc mấy giờ? + Cho tam giác ABC (AB > BC > AC) có ba góc nhọn và nội tiếp đường tròn (O). Vẽ đường tròn tâm C, bán kính CB cắt đường thẳng AB tại điểm D và cắt đường tròn (O) tại điểm thứ hai là E. a) Chứng minh đường thẳng DE vuông góc với đường thẳng AC. b) Đường thẳng DE cắt đường tròn (O) tại điểm thứ hai là F. Các đường thẳng CO, AB cắt nhau tại điểm H và các đường thẳng BE, CF cắt nhau tại điểm K. Chứng minh 𝐶𝐾𝐻 = 𝐶𝐵𝐻. c) Gọi I là giao điểm của đường thẳng AB và CE. Chứng minh IA.IB = ID.IH.

Nguồn: toanmath.com

Đọc Sách

Đề Toán tuyển sinh lớp 10 năm 2018 - 2019 sở GD và ĐT Bình Phước (đề chung)
Đề Toán tuyển sinh lớp 10 năm 2018 – 2019 sở GD và ĐT Bình Phước (đề chung cho tất cả các thí sinh) được biên soạn theo hình thức tự luận với 5 bài toán, thí sinh làm bài trong thời gian 120 phút (không kể thời gian phát đề), kỳ thi được diễn ra vào ngày 01/06/2018 nhằm đánh giá, phân loại năng lực học sinh khối 9, từ đó các trường THPT thuộc sở GD và ĐT Bình Phước có căn cứ để đưa ra mức điểm tuyển sinh phù hợp, tuyển chọn các em học sinh phù hợp với tiêu chí để chuẩn bị cho năm học mới, đề thi có lời giải chi tiết .
Đề Toán tuyển sinh lớp 10 năm 2018 - 2019 sở GD và ĐT Bình Phước (đề chuyên)
Đề Toán tuyển sinh lớp 10 năm 2018 – 2019 sở GD và ĐT Bình Phước (đề dành cho thí sinh thi vào trường chuyên) được biên soạn nhằm đánh giá năng lực học sinh khối 9, từ đó các trường THPT chuyên thuộc sở GD&ĐT Bình Phước có căn cứ tuyển sinh vào lớp 10 để chuẩn bị cho năm học mới, đề gồm 1 trang với 6 bài toán tự luận, thí sinh có 120 phút để hoàn thành đề thi, kỳ thi được tổ chức vào ngày 03/06/2018, đề thi có lời giải chi tiết . Trích dẫn đề Toán tuyển sinh lớp 10 năm 2018 – 2019 sở GD và ĐT Bình Phước : + Xét các số thực a, b, c với b ≠ a + c sao cho phương trình bậc hai ax^2 + bx + c = 0 có hai nghiệm thực m, n thỏa mãn 0 ≤ m, n ≤ 1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức M = [(a – b)(2a – c)]/[a(a – b + c)]. [ads] + Tìm tất cả các số nguyên tố p sao cho 16p + 1 là lập phương của số nguyên dương. + Cho Parabol (P): y = 1/2.x^2 và đường thẳng (d): y = (m + 1)x – m^2 – 1/2 (m là tham số). Với giá trị nào của m thì đường thẳng (d) cắt Parabol (P) tại hai điểm A(x1;y1), B(x2;y2) sao cho biểu thức T = y1 + y2 – x1.x2 đạt giá trị nhỏ nhất.
Đề Toán tuyển sinh lớp 10 THPT chuyên 2018 - 2019 sở GD và ĐT Nam Định (đề chung)
Đề Toán tuyển sinh lớp 10 THPT chuyên 2018 – 2019 sở GD và ĐT Nam Định (đề chung dành cho tất cả các thí sinh) được biên soạn theo hình thức tự luận với 5 bài toán, thí sinh làm bài trong thời gian 120 phút, đề nhằm tuyển chọn các em học sinh lớp 9 có năng khiếu môn Toán vào học tại các trường THPT chuyên tại tỉnh Nam Định, đề thi có lời giải chi tiết .
Đề Toán tuyển sinh lớp 10 THPT năm 2018 - 2019 sở GD và ĐT Đắk Lắk
Đề Toán tuyển sinh lớp 10 THPT năm 2018 – 2019 sở GD và ĐT Đắk Lắk được biên soạn vào tổ chức thi vào ngày 08/06/2018 nhằm giúp các trường THPT tại tỉnh Đắk Lắk có cở sở để tuyển chọn các em học sinh phù hợp với tiêu chí của trường để chuẩn bị cho năm học mới, đề thi có lời giải chi tiết .