Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT Chuyên ĐH Sư phạm Hà Nội (Vòng 2)

Nội dung Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT Chuyên ĐH Sư phạm Hà Nội (Vòng 2) Bản PDF - Nội dung bài viết Đề thi tuyển sinh Toán 2017-2018 trường THPT Chuyên ĐH Sư phạm Hà Nội Đề thi tuyển sinh Toán 2017-2018 trường THPT Chuyên ĐH Sư phạm Hà Nội Đề thi tuyển sinh lớp 10 THPT năm học 2017-2018 môn Toán của trường THPT Chuyên ĐH Sư phạm Hà Nội là một bài kiểm tra chất lượng, thách thức dành cho học sinh chuyên Toán và chuyên Tin. Đề thi gồm 5 bài toán tự luận, mỗi bài đều có lời giải chi tiết, đòi hỏi học sinh phải sử dụng kiến thức và kỹ năng tính toán logic để giải quyết. Trong đề thi có một bài toán liên quan đến đường tròn và hình học không gian. Đề bài yêu cầu học sinh chứng minh định lý, tìm quan hệ giữa các phần tử trong hình học và điền số vào các ô trống theo quy tắc và điều kiện nhất định. Đây là bài toán đòi hỏi sự tỉ mỉ, cẩn thận và logic trong tư duy khi giải quyết, giúp học sinh rèn luyện kỹ năng nhận biết và giải quyết vấn đề một cách logic và chính xác. Đề thi cũng đề cập đến vấn đề về tứ giác nội tiếp, giao điểm của các đường tròn và hình học phẳng. Học sinh cần áp dụng kiến thức về hình học và định lý để chứng minh các quan hệ giữa các yếu tố trong bài toán. Bài toán này giúp học sinh mở rộng tư duy hình học, rèn luyện khả năng suy luận và giải quyết vấn đề phức tạp. Đề thi Toán của trường THPT Chuyên ĐH Sư phạm Hà Nội không chỉ là bài kiểm tra tri thức mà còn là cơ hội để học sinh phát huy tư duy sáng tạo, logic và khả năng giải quyết vấn đề. Bằng cách giải quyết các bài toán trong đề thi này, học sinh được khuyến khích phát huy tối đa khả năng toán học của mình và chuẩn bị tốt cho những thách thức sau này trong học tập và công việc.

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Tuyên Quang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Tuyên Quang; đề được biên soạn theo hình thức 75% trắc nghiệm + 25% tự luận (theo điểm số), phần trắc nghiệm gồm 30 câu, phần tự luận gồm 03 câu, thời gian làm bài 90 phút, đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận. Trích dẫn đề thi tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Tuyên Quang : + Trên nửa đường tròn đường kính AD lấy hai điểm B C phân biệt sao cho B ở giữa A và C (B khác A và C khác D). Gọi E là giao điểm của AC và BD; F là chân đường vuông góc kẻ từ E xuống AD. Chứng minh rằng: a) Tứ giác DCEF nội tiếp được một đường tròn. b) Hai tam giác CEF và CBA đồng dạng với nhau. + Một người mua 0,3 kg thịt lợn và 0,4 kg thịt bò hết 148000 đồng. Một người khác mua 0,4 kg thịt lợn và 0,3 kg thịt bò hết 139000 đồng (đơn giá mua thịt lợn và thịt bò của hai người là bằng nhau). Hỏi giá 1 kg thịt bò là bao nhiêu? + Trong một đường tròn, khẳng định nào dưới đây sai? A. Dây nào nhỏ hơn thì dây đó gần tâm hơn. B. Hai dây cách đều tâm thì bằng nhau. C. Hai dây bằng nhau thì cách đều tâm. D. Dây nào lớn hơn thì dây đó gần tâm hơn.
Đề thi tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Sơn La
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Sơn La; đề được biên soạn theo hình thức 20% trắc nghiệm + 80% tự luận (theo điểm số), phần trắc nghiệm gồm 10 câu, phần tự luận gồm 05 câu, thời gian làm bài 120 phút; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 14 tháng 06 năm 2021. Trích dẫn đề thi tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Sơn La : + Một trường THPT nhận được 650 hồ sơ đăng kí thi tuyển sinh vào lớp 10 với hai hình thức: đăng kí trực tuyến và đăng kí trực tiếp tại nhà trường. Số hồ sơ đăng kí trực tuyến nhiều hơn số hồ sơ đăng kí trực tiếp là 120 hồ sơ. Hỏi nhà trường đã nhận bao nhiêu hồ sơ đăng kí trực tuyến? + Cho tam giác ABC nhọn có đường cao AD và H là trực tâm tam giác. Vẽ đường tròn tâm I đường kính BC, từ A kẻ các tiếp tuyến AM AN với đường tròn I (M N là các tiếp điểm). a) Chứng minh tứ giác AMIN nội tiếp đường tròn. b) Chứng minh AMN ADN và AHN AND. c) Chứng minh ba điểm M H N thẳng hàng. + Cho parabol 2 P y x và hai điểm A(-3;9), B(2;4). Tìm điểm M có hoành độ thuộc khoảng (-3;2) trên (P) sao cho diện tích tam giác MAB lớn nhất.
Đề thi tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Phú Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Phú Yên; đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận. Trích dẫn đề thi tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Phú Yên : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Quãng đường AB gồm một đoạn lên dốc dài 5km và một đoạn xuống dốc dài 10km. Một người đi xe đạp từ A đến B hết 1 giờ 10 phút và đi từ B về A hết 1 giờ 20 phút (vận tốc lên dốc, xuống dốc lúc đi và về như nhau). Tính vận tốc lúc lên dốc, lúc xuống dốc của người đi xe đạp. + Cho hình thang ABCD có A D 90 AD AB 4 CD AB 3. Gọi M là trung điểm của AD, E là hình chiếu vuông góc của M lên BC. Tia BM cắt đường thẳng CD tại F. a) Chứng minh rằng MAE MBE. b) Chứng minh rằng ABDF là hình bình hành. c) Đường thẳng qua M vuông góc với BF cắt cạnh BC tại N. Gọi H là hình chiếu vuông góc của N lên CD. Chứng minh rằng tam giác BNF cân. d) Chứng minh rằng đường thẳng MH đi qua trung điểm của DE. + Cho hàm số 2 y ax. a) Xác định hệ số a biết rằng đồ thị của hàm số cắt đường thẳng y x 2 tại điểm A có hoành độ bằng 1. b) Vẽ đồ thị của hàm số y x 2 và đồ thị hàm số 2 y ax với giá trị của a vừa tìm được ở câu a trên cùng một mặt phẳng tọa độ. c) Dựa vào đồ thị, hãy xác định tọa độ giao điểm thứ hai (khác A) của hai đồ thị vừa vẽ trong câu b.
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Phú Thọ; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi tuyển sinh vào lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Phú Thọ : + Cho hệ phương trình 2 1 3 4 1 x y m x y m (m là tham số). a) Giải hệ phương trình với m 2. b) Tìm m để hệ phương trình có nghiệm duy nhất x y thỏa mãn 2 2 3 2 x y. + Cho đường tròn O đường kính AB. Trên tia đối của tia AB lấy điểm C (C không trùng với B). Kẻ tiếp tuyến CD với đường tròn O (D là tiếp điểm), tiếp tuyến tại A của đường tròn O cắt đường thẳng CD tại E. a) Chứng minh rằng tứ giác AODE nội tiếp. b) Gọi H là giao điểm của AD và OE, K là giao điểm của BE với đường tròn O (K không trùng với B). Chứng minh EHK KBA. c) Đường thẳng vuông góc với AB tại O cắt CE tại M. Chứng minh 1 EA MO EM MC. + Cho a, b, c là các số dương thỏa mãn 2 2 2 a b c 1. Tìm giá trị lớn nhất của biểu thức A a bc 1 2 1 2.