Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Lâm Đồng

Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Lâm Đồng Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Lâm Đồng Đề thi tuyển sinh THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Lâm Đồng Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Lâm Đồng bao gồm 5 bài toán tự luận. Đây là một đề thi khá thú vị với những bài toán mang tính logic cao, đòi hỏi học sinh phải suy luận và chứng minh rõ ràng. Trong đó, có một số bài toán đáng chú ý như sau: 1. Từ điểm P ngoài đường tròn (O), kẻ hai tiếp tuyến PA, PB với đường tròn (A, B là hai tiếp điểm). Gọi M là giao điểm của OP và AB. Kẻ dây cung CD đi qua M (CD không đi qua O và CD không trùng với AB ). Hai tiếp tuyến của đường tròn (O) tại C và D cắt nhau ở Q. Chứng minh rằng OP vuông góc với PQ. 2. Chứng minh rằng nếu n là là tự nhiên lớn hơn 1 thì 2^n - 1 không thể là số chính phương. Các bài toán trong đề thi này không chỉ giúp học sinh rèn luyện kỹ năng giải các bài toán toán học mà còn giúp họ phát triển tư duy logic và khả năng chứng minh. Hy vọng rằng đề thi này sẽ giúp các thí sinh thử thách và phấn đấu hết mình trong kỳ thi tuyển sinh.

Nguồn: sytu.vn

Đọc Sách

Đề thi thử vào lớp 10 môn Toán năm 2022 - 2023 trường THCS Giảng Võ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử tuyển sinh vào lớp 10 môn Toán năm học 2022 – 2023 trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 18 tháng 05 năm 2022. Trích dẫn đề thi thử vào lớp 10 môn Toán năm 2022 – 2023 trường THCS Giảng Võ – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Để hưởng ứng phong trào “Góp một cuốn sách nhỏ đọc ngàn cuốn sách hay” trong học kì I khối 8 và khối 9 quyên góp được 780 cuốn sách. Sang học kì ll số sách khối 8 quyên góp được giảm 15% số sách khối 9 quyên góp được tăng 20% so với học kì I nên cả hai khối quyên góp được 789 cuốn sách. Hỏi trong học kì I mỗi khối đã quyên góp được bao nhiêu cuốn sách? + Một bể cá mini có dạng hình cầu bán kính 7,5 cm. Hỏi cần ít nhất bao nhiêu lít nước để thay nước cho bể cá. Biết lượng nước cần thay bằng thể tích của bể (bỏ qua bề dày thành bể lấy pi ≈ 3,14 và làm tròn kết quả đến chữ số thập phân thứ nhất). + Cho x > 0 và y > 0 và x + y =< 1. Tìm giá trị nhỏ nhất của biểu thức A?
Đề thi thử Toán vào lớp 10 năm 2022 - 2023 phòng GDĐT thành phố Vinh - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An; đề thi có đáp án, lời giải chi tiết và bảng hướng dẫn chấm điểm. Trích dẫn đề thi thử Toán vào lớp 10 năm 2022 – 2023 phòng GD&ĐT thành phố Vinh – Nghệ An : + Tại bể bơi hình chữ nhật ở VRC – Thành phố Vinh, bạn An thực hiện đo diện tích bể bơi bằng cách: An đi 1 vòng quanh bể bơi bằng cách đi sát mép bể bơi từ đầu đến cuối cạnh thứ nhất rồi đến cạnh thứ hai, cạnh thứ ba và hết cạnh thứ tư. Sau khi đi hết một vòng trở về điểm xuất phát ban đầu An thấy mình đã thực hiện 140 bước đi, số bước chân đi hết cạnh thứ hai nhiều hơn số bước chân đi hết cạnh thứ nhất là 30 bước. Biết chiều dài mỗi bước chân của An đi là như nhau và bằng 0,5 m. Hỏi diện tích bể bơi mà An đã đo được là bao nhiêu? + Cho đường tròn (O) và điểm F nằm ngoài đường tròn. Từ F kẻ các tiếp tuyến FA và FB với đường tròn (O) (A, B là các tiếp điểm). Vẽ đường kính BE của đường tròn (O), FE cắt AO tại I. Qua I vẽ đường thẳng song song với AE cắt AF tại K, cắt BE tại G. a) Chứng minh tứ giác AOBF nội tiếp b) Chứng minh I là trung điểm của KG c) Gọi M là giao của AB và OF, N là trung điểm của FM, NB cắt đường tròn (O) tại P (P khác B). Chứng minh PM vuông góc với NB. + Giả sử phương trình 2 2 2 1 0 x x có 2 nghiệm 1 2 x x. Không giải phương trình đã cho, lập một phương trình bậc 2 ẩn y có các nghiệm là 1 2 1 1 x x 1 1.
Đề thi thử Toán vào lớp 10 lần 1 năm 2022 - 2023 trường THPT Sơn Tây - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2022 – 2023 trường THPT Sơn Tây, thành phố Hà Nội. Trích dẫn đề thi thử Toán vào lớp 10 lần 1 năm 2022 – 2023 trường THPT Sơn Tây – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Trạm y tế phường Trung Hưng phải tiêm xong 3500 mũi vaccine phòng Covid-19 trong một số ngày quy định. Thực tế, mỗi ngày trạm y tế đã tiêm được nhiều hơn 200 mũi vaccine so với số mũi vaccine phải tiêm trong một ngày theo kế hoạch. Vì thế trạm y tế đã tiêm xong 3500 mũi vaccine đó trước thời hạn dự định hai ngày. Hỏi thực tế, mỗi ngày trạm y tế phường Trung Hưng đã tiêm được bao nhiêu mũi vaccine? (Giả định rằng số mũi vaccine trạm y tế được trong mỗi ngày là bằng nhau). + Một chiếc lồng đèn trung thu hình trụ có chiều cao 35cm và bán kính đáy 10cm. Người ta dán giấy trang trí toàn bộ phía ngoài mặt xung quanh của lồng đèn này (trừ hai mặt đáy). Tính diện tích bề mặt được dán giấy trang trí của lồng đèn. (Bỏ qua bề dày vật liệu và lấy π ≈ 3,14). + Cho hai số thực dương a, b thỏa mãn a b 2022 2022 90. Tìm giá trị nhỏ nhất của biểu thức 2 2 P a ab b.
Đề thi thử Toán vào lớp 10 năm 2022 - 2023 phòng GDĐT Nha Trang - Khánh Hòa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Nha Trang, tỉnh Khánh Hòa; kỳ thi được diễn ra vào ngày 18 tháng 05 năm 2022. Trích dẫn đề thi thử Toán vào lớp 10 năm 2022 – 2023 phòng GD&ĐT Nha Trang – Khánh Hòa : + Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = x + m – 1 a) Vẽ đồ thị (P). b) Tìm điều kiện của m để (d) cắt (P) tại hai điểm phân biệt. c) Gọi A và B là hai giao điểm phân biệt của (d) và (P). Tìm m sao cho |x1 − x2| = 2. + Trong đợt dịch Covid-19, học sinh hai lớp 9A và 9B tại một trường Trung học cơ sở đã ủng hộ 212 hộp khẩu trang cho những nơi cách ly tập trung. Biết rằng số học sinh lớp 9A nhiều hơn số học sinh lớp 9B là 1 học sinh và mỗi học sinh lớp 9A ủng hộ 2 hộp khẩu trang, mỗi học sinh lớp 9B ủng hộ 3 hộp khẩu trang. Tìm số học sinh của mỗi lớp. + Cho tam giác ABC nhọn nội tiếp đường tròn(O) có hai đường cao BE và CF. Hai tiếp tuyến của (O) tại B và C cắt nhau tại K. Đường thẳng AK cắt đường tròn (O) tại D. a) Chứng minh tứ giác BFEC là tứ giác nội tiếp. b) Chứng minh rằng KBD đồng dạng KAB và AB.CD = AC.BD. c) Chứng minh rằng đường thẳng AK đi qua trung điểm của EF.