Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Cách tìm công thức tổng quát của dãy số cho bởi công thức truy hồi - Phạm Thị Thu Huyền

Tài liệu gồm 23 trang hướng dẫn phương pháp tìm công thức tổng quát của dãy số cho bởi công thức truy hồi thông qua một số ví dụ minh họa, tài liệu được biên soạn bởi cô Phạm Thị Thu Huyền với nội dung gồm: Dạng 1: Tìm số hạng tổng quát của dãy số (dạng đa thức) khi biết các số hạng đầu tiên Dạng 2: Dạng cơ sở: Cho dãy (un) biết u1 = a và un+1 = q.un + d ∀ n ≥ 1 với q, d là các hằng số thực Gồm 4 trường hợp, dạng này được gọi là dạng cơ sở vì: + Với 3 trường hợp 1, 2, và 3 dãy số trở thành các dãy đặc biệt đó là: dãy số hằng, cấp số cộng và cấp số nhân. Các dãy số này ta đều đã tìm được công thức của số hạng tổng quát. [ads] + Trên cơ sở của 3 dãy này, để giải trường hợp 4: bằng phương pháp đặt một dãy số mới (vn) liên hệ với dãy số (un) bằng một biểu thức nào đó để có thể đưa được về dãy số (vn) mà (vn) dãy số hằng hoặc cấp cộng hoặc cấp số nhân. + Vấn đề đặt ra là: Mối liên hệ giữa (un) và (vn) bởi biểu thức nào mới có thể đưa dãy số (vn) thành dãy số hằng hoặc cấp số cộng hoặc cấp số nhân hoặc trường hợp 4. Sử dụng máy tính Casio để tìm các số hạng trong một dãy số được cho bởi công thức truy hồi Theo dự án mới của Bộ Giáo Dục và Đào Tạo, từ năm học 2016 – 2017 kỳ thi THPT Quốc gia, bộ môn Toán thi bằng phương pháp trắc nghiệm. Vậy, với một bài toán về dãy số mà dãy số đó cho bởi công thức truy hồi thì phải giải thế nào? Có phải tìm công thức của số hạng tổng quát hay không? Bài viết giới thiệu quy trình bấm máy tính Casio để tìm giá trị uk của một dãy số cho bởi biểu thức truy hồi.

Nguồn: toanmath.com

Đọc Sách

Trắc nghiệm dãy số, cấp số cộng và cấp số nhân trong các đề thi thử Toán 2018
Tài liệu gồm 86 trang tổng hợp, phân loại và giải chi tiết các câu hỏi và bài tập trắc nghiệm dãy số, cấp số cộng và cấp số nhân trong các đề thi thử Toán 2018. Trích dẫn tài liệu trắc nghiệm dãy số, cấp số cộng và cấp số nhân trong các đề thi thử Toán 2018 : + (THPT Thạch Thành 2 – Thanh Hóa – lần 1 năm 2017 – 2018) Trong các phát biểu sau, phát biểu nào là sai? A. Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. B. Một cấp số cộng có công sai dương là một dãy số dương. C. Một cấp số cộng có công sai dương là một dãy số tăng. D. Dãy số có tất cả các số hạng bằng nhau là một cấp số cộng. [ads] + (THPT Chuyên Hùng Vương – Phú Thọ – lần 1 – NH 2017 – 2018) Trong các phát biểu sau, phát biểu nào là sai? A. Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. B. Dãy số có tất cả các số hạng bằng nhau là một cấp số cộng. C. Một cấp số cộng có công sai dương là một dãy số tăng. D. Một cấp số cộng có công sai dương là một dãy số dương. + (ĐHQG TPHCM – Cơ Sở 2 – năm 2017 – 2018) Người ta trồng 465 cây trong một khu vườn hình tam giác như sau: Hàng thứ nhất có 1 cây, hàng thứ hai có 2 cây,  hàng thứ ba có 3 cây …. Số hàng cây trong khu vườn là?
80 câu trắc nghiệm cấp số cộng, cấp số nhân - Hứa Lâm Phong
Tài liệu gồm 8 trang tuyển chọn 80 câu trắc nghiệm cấp số cộng, cấp số nhân có đáp án do thầy Hứa Lâm Phong biên soạn. Trích một số bài toán trong tài liệu : 1. Cho cấp số cộng có 4 số hạng trong đó tổng của chúng bằng 22, tổng bình phương bằng 166. Bốn số hạng của cấp số cộng là? 2. Tam giác ABC có ba góc A, B, C lập thành một cấp số nhân có công bội bằng 2. Ba góc A, B, C biết A< B< C lần lượt là? 3. Số các số hạng trong một cấp số cộng là chẵn. Tổng các số hạng thứ lẻ và các số hạng thứ chữan lần lượt là 24 và 30. Biết số hạng cuối lớn hơn số hạng đầu là 10,5; số các số hạng là bao nhiêu? Đáp số của bài toán là: A. 20   B. 18 C. 12   D. 8 [ads]
30 câu trắc nghiệm giới hạn của dãy số - Trần Công Diêu
Tài liệu gồm 13 trang với phần tóm tắt lý thuyết và 30 câu trắc nghiệm giới hạn của dãy số có lời giải chi tiết. Trích dẫn tài liệu : + Kết quả nào sau đây đúng? A. Cấp số nhân lùi vô hạn (un) có công bội q thì tổng S = u/(1 – q) B. Cấp số nhân lùi vô hạn (un) có u1 = 4, q = 4/3 thì S = -12 C. Cấp số nhân lùi vô hạn (un) có u1 = 15, S = 60 thì công bội q = 3/4 D. Cấp số nhân lùi vô hạn (un) có u1 = -4, q = -5/4 thì S = -169 [ads] + Cấp số nhân lùi vô hạn (un) có u1 = -50, S = 100. Năm số hạng đầu tiền của cấp số cộng này là? A.50; 25; 12,5; 6,5; 3,25 B.50; 25,5; 12,5; 6,25; 3,125 C.50; 25; 12,5; 6,25; 3,125 D.50; 25; 12,25; 6,125; 3,0625 + Chọn mệnh đề đúng: A. lim cos(2π/n) = 0 B. lim cos(2π/n) = 1 C. lim cos(2π/n) = -1 D. lim cos(2π/n) = 0 không có giới hạn