Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử THPT Quốc gia 2016 môn Toán trường Bình Sơn - Đồng Nai

Đề thi thử Quốc gia 2016 môn Toán trường Bình Sơn – Đồng Nai có đáp án và thang điểm chi tiết. Đề thi và đáp án gồm 6 trang: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị hàm số trùng phương. Câu 2: a) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn. b) Xác định giá trị của tham số m để hàm số đạt cực đại tại x = -1. Câu 3: a) Tìm phần thực và phần ảo của z. b) Giải phương trình logarit. Câu 4: Tính tích phân. Câu 5: Viết phương trình mặt phẳng (P) đi qua A và vuông góc với đường thẳng d. Tìm tọa độ giao điểm của d và (P). Câu 6: a) Tính giá trị của biểu thức lượng giác. b) Tính xác suất sao cho tổng các số trên hai thẻ là số chẵn. Câu 7: Tính theo a thể tích của khối chóp S.ABC và khoảng cách giữa hai đường thẳng SI, AC. Câu 8: Tìm tọa độ các đỉnh A, C biết diện tích tam giác ABC bằng 30 và đỉnh A có hoành độ dương. Câu 9: Giải phương trình vô tỉ. Câu 10: Tìm GTNN của biểu thức 3 biến P.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán THPT Quốc gia 2018 trường THPT Trần Phú - Lâm Đồng
Đề thi thử Toán THPT Quốc gia 2018 trường THPT Trần Phú – Lâm Đồng mã đề 132 được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi, đề gồm 6 trang, thí sinh làm bài trong vòng 90 phút. Trích dẫn đề thi thử Toán THPT Quốc gia 2018 trường THPT Trần Phú – Lâm Đồng : + Hai người ngang tài ngang sức tranh chức vô địch của một cuộc thi cờ vua. Người giành chiến thắng là người đầu tiên thắng được 5 ván cờ. Tại thời điểm người chơi thứ nhất đã thắng 4 ván và người chơi thứ hai mới thắng 2 ván, tính xác suất để người chơi thứ nhất giành chiến thắng. [ads] + Cho khai triển(x – 2)^n thành một đa thức. Biết rằng trong khai triển đó nếu xếp theo thứ tự với số mũ giảm dần của x thì hệ số của số hạng thứ ba gấp 60 lần hệ số của số hạng thứ nhất. Khi đó hệ số của số hạng chứa x^5 là? + Cho hàm số y = f(x) có bảng biến thiên như sau, khẳng định nào sau đây đúng: A. Điểm cực đại của đồ thị hàm số là 1. B. Hàm số nghịch biến trên (-3;1). C. Đồ thị hàm số y = f(x) có hai đường tiệm cận. D. Đồ thị hàm số y = f(x) cắt trục hoành tại 3 điểm phân biệt.
Đề thi thử Toán THPTQG 2018 trường THPT Thị Xã Quảng Trị lần 2
Đề thi thử Toán THPTQG 2018 trường THPT Thị Xã Quảng Trị lần 2 mã đề 132 gồm 5 trang với 50 câu hỏi trắc nghiệm khách quan, thí sinh làm bài trong 90 phút, đề thi có đáp án . Trích dẫn đề thi thử Toán THPTQG 2018 trường THPT Thị Xã Quảng Trị lần 2 : + Cho hai đường tròn (C), (C’) lần lượt có phương trình x^2 + y^2 – 2x – 4y + 4 = 0, x^2 + y^2 + 2x =0. Gọi (a;b;c) là bộ ba hằng số để đồ thị hàm số y = (ax + b)/(x + c) đi qua tâm của hai đường tròn (C), (C’) và mỗi đường tiệm cận của đồ thị là tiếp tuyến chung của hai đường tròn (C), (C’). Tính P = a + b + c. [ads] + Tính thể tích của phần vật thể giới hạn bởi hai mặt phẳng x = 0 và x = 3, biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x (0 ≤ x ≤ 3) là một hình tròn có đường kính bằng √(36 – 3x^2). + Cho hàm số y = lnx (C) và đường thẳng d: x – y + 1 = 0. M là điểm di động trên (C), N là điểm di động trên d. Tìm giá trị nhỏ nhất của độ dài đoạn MN.
Đề thi thử Toán THPTQG 2018 trường THPT Bình Minh - Ninh Bình lần 4
Đề thi thử Toán THPTQG 2018 trường THPT Bình Minh – Ninh Bình lần 4 mã đề 001 gồm 6 trang với 50 câu hỏi trắc nghiệm khách quan, đề được biên soạn bám sát chuẩn cấu trúc đề Toán của Bộ GD và ĐT, đề thi có đáp án . Trích dẫn đề thi thử Toán THPTQG 2018 trường THPT Bình Minh – Ninh Bình lần 4 : + Gọi S các giá trị nguyên của m để giá trị nhỏ nhất của hàm số y = |lnx – 2x^2 + m| trên [1;e] là nhỏ nhất. Tổng các phần tử của S là? + Có 5 học sinh lớp A, 5 học sinh lớp B được xếp ngẫu nhiên vào hai dãy ghế đối diện nhau mỗi dãy 5 ghế (xếp mỗi học sinh một ghế). Tính xác suất để 2 học sinh bất kì ngồi đối diện nhau khác lớp. [ads] + Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm M(1;2;3) và cắt các tia Ox, Oy, Oz lần lượt tại các điểm A, B, C khác với gốc tọa độ O sao cho biểu thức 6OA + 3OB + 2OC có giá trị nhỏ nhất.
Đề thi thử Toán THPTQG 2018 trường THPT chuyên Lào Cai lần 3
Đề thi thử Toán THPTQG 2018 trường THPT chuyên Lào Cai lần 3 mã đề 132 được biên soạn và tổ chức khi trong thời điểm kỳ thi THPT Quốc gia năm 2018 đã đến gần, đề giúp các em củng cố lại các kiến thức đã ôn tập, cọ sát thêm với một số dạng toán mới để các em có thể đạt điểm số cao nhất trong kỳ thi môn Toán 2018 chính thức, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi thử Toán THPTQG 2018 trường THPT chuyên Lào Cai lần 3 : + Gieo hai đồng xu A và B một cách độc lập. Đồng xu A chế tạo cân đối. Đồng xu B chế tạo không cân đối nên xác suất xuất hiện mặt sấp gấp 3 lần xác suất xuất hiện mặt ngửa. Tính xác suất để khi gieo hai đồng xu cùng lúc được kết quả 1 sấp và 1 ngửa. [ads] + Có 1 con mèo vàng, 1 con mèo đen, 1 con mèo nâu, 1 con mèo trắng, 1 con mèo xanh và 1 con mèo tím. Xếp 6 con mèo thành hàng ngang vào 6 cái ghế, mỗi ghế một con. Hỏi có bao nhiêu cách sắp xếp chỗ sao cho mèo vàng và mèo đen ở cạnh nhau? + Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = a, BC = b, CC’ = c. Gọi O, O’ lần lượt là tâm của ABCD và A’B’C’D’. Gọi (α) là mặt phẳng qua O’ và song song với hai đường thẳng A’D và D’O. Dựng thiết diện của hình hộp chữ nhật ABCD.A’B’C’D’ khi cắt bởi mặt phẳng (α). Tìm điều kiện của a, b, c để thiết diện nói trên là hình thoi có một góc bằng 60 độ.