Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi Quốc gia môn Toán năm học 2020 2021

Nội dung Đề thi chọn học sinh giỏi Quốc gia môn Toán năm học 2020 2021 Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Quốc gia môn Toán năm học 2020 – 2021; đề thi gồm có 02 bài thi, bài thi thứ nhất gồm 04 bài toán tự luận, thời gian làm bài 180 phút, bài thi thứ hai gồm 03 bài toán tự luận, thời gian làm bài 180 phút; kỳ thi được diễn ra trong hai ngày: Ngày 1: 25/12/2020 và Ngày 2: 26/12/2020. Trích dẫn đề thi chọn học sinh giỏi Quốc gia môn Toán năm học 2020 – 2021 : + Một học sinh chia tất cả 30 viên bi vào 5 cái hộp được đánh số 1, 2, 3, 4, 5 (sau khi chia có thể có hộp không có viên bi nào). a) Hỏi có bao nhiêu cách chia các viên bi vào các hộp (hai cách chia là khác nhau nếu có một hộp có số bi trong hai cách chia là khác nhau)? b) Sau khi chia, học sinh này sơn 30 viên bi đó bởi một số màu (mỗi viên được sơn đúng một màu, một màu có thể sơn cho nhiều viên bi), sao cho không có 2 viên bi nào trong cùng một hộp có màu giống nhau và từ 2 hộp bất kì không thể chọn ra được 8 viên bi được sơn bởi 4 màu. Chứng minh rằng với mọi cách chia, học sinh đều phải dùng không ít hơn 10 màu để sơn bi. c) Hãy chỉ ra một cách chia sao cho với đúng 10 màu học sinh có thể sơn bi thỏa mãn các điều kiện ở câu b. + Cho tam giác nhọn không cân ABC có trực tâm H và D, E, F lần lượt là chân đường cao hạ từ các đỉnh A, B, C. Gọi (1) là đường tròn ngoại tiếp tam giác HEF với tâm I và K, J lần lượt là trung điểm BC, EF. Cho HJ cắt lại (I) tại G, GK cắt lại (I) tại L. a) Chứng minh rằng AD vuông góc với EF. b) Cho AD cắt EF tại M, IM cắt lại đường tròn ngoại tiếp tam giác IEF tại N, DN cắt AB, AC lần lượt tại P, Q. Chứng minh rằng PE, QF, AK đồng quy.

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi tỉnh Toán THPT năm 2020 2021 sở GD ĐT Kiên Giang
Nội dung Đề thi học sinh giỏi tỉnh Toán THPT năm 2020 2021 sở GD ĐT Kiên Giang Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi vòng tỉnh môn Toán THPT năm học 2020 – 2021 sở Giáo dục và Đào tạo tỉnh Kiên Giang; kỳ thi được diễn ra vào ngày 18 tháng 03 năm 2021; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi học sinh giỏi cấp tỉnh Toán THPT năm 2020 2021 sở GD ĐT Tiền Giang
Nội dung Đề thi học sinh giỏi cấp tỉnh Toán THPT năm 2020 2021 sở GD ĐT Tiền Giang Bản PDF Thứ Ba ngày 09 tháng 03 năm 2021, sở Giáo dục và Đào tạo Tiền Giang tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề thi học sinh giỏi cấp tỉnh Toán THPT năm 2020 – 2021 sở GD&ĐT Tiền Giang gồm 02 trang với 07 bài toán dạng tự luận, thời gian làm bài 180 phút (không kể thời gian phát đề).
Đề thi học sinh giỏi lớp 12 môn Toán năm 2020 2021 sở GD ĐT thành phố Hồ Chí Minh
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán năm 2020 2021 sở GD ĐT thành phố Hồ Chí Minh Bản PDF Thứ Tư ngày 17 tháng 03 năm 2021, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh tổ chức kỳ thi chọn học sinh giỏi lớp 12 cấp thành phố môn Toán (thường) năm học 2020 – 2021. Đề thi học sinh giỏi Toán lớp 12 năm 2020 – 2021 sở GD&ĐT thành phố Hồ Chí Minh gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút (không kể thời gian phát đề). Trích dẫn đề thi học sinh giỏi Toán lớp 12 năm 2020 – 2021 sở GD&ĐT thành phố Hồ Chí Minh : + Cho hàm số y = x^2 + x + 2021,5 có đồ thị (P). Tìm tập hợp các điểm M trong mặt phẳng mà từ M có thể kẻ được hai tiếp tuyến vuông góc đến (P). + Cho hình nón đỉnh S có đáy là đường tròn (O). Trong hình nón, người ta đặt một hình chóp D.ABC có đáy ABC là tam giác cân tại A, nội tiếp đường tròn (O) và BAC = 120°. Đỉnh D nằm trên mặt xung quanh của hình nón, các mặt bên của hình chóp tạo với đáy một góc bằng nhau. a) Chứng minh D thuộc đường thẳng SA. b) Tính thể tích khối nón khi thể tích khối chóp bằng 3. + Cho X = {n thuộc Z | -5 =< n =< 5} và X là tập hợp các hàm số f(x) = ax4 + bx2 + c có a, b, c thuộc X và f(x) có 3 điểm cực trị. Chọn ngẫu nhiên f(x) từ X, tính xác suất để gốc tọa độ O nằm hoàn toàn trong tam giác tạo thành từ ba điểm cực trị của đồ thị f(x).
Đề thi học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2020 2021 sở GD ĐT Bắc Giang
Nội dung Đề thi học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2020 2021 sở GD ĐT Bắc Giang Bản PDF Thứ Bảy ngày 06 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Bắc Giang tổ chức kỳ thi chọn học sinh giỏi văn hóa cấp tỉnh môn Toán lớp 12 năm học 2020 – 2021. Đề thi học sinh giỏi cấp tỉnh Toán lớp 12 năm 2020 – 2021 sở GD&ĐT Bắc Giang được biên soạn theo dạng đề thi trắc nghiệm kết hợp với tự luận, phần trắc nghiệm gồm 40 câu, chiếm 14 điểm, phần tự luận gồm 03 câu, chiếm 06 điểm, thời gian làm bài 120 phút. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán lớp 12 năm 2020 – 2021 sở GD&ĐT Bắc Giang : + Cho hai mặt phẳng (P), (Q) song song với nhau và cùng cắt khối cầu tâm O, bán kính R thành hai hình tròn cùng bán kính. Xét hình nón có đỉnh trùng với tâm của một trong hai hình tròn này và có đáy là hình tròn còn lại. Khoảng cách h giữa hai mặt phẳng (P), (Q) khi diện tích xung quanh của hình nón lớn nhất là? + Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = 6cm, BC = BB’ = 2cm. Gọi E là trung điểm cạnh BC. Một tứ diện đều MNPQ có hai đỉnh M và N nằm trên đường thẳng EC’, hai đỉnh P và Q nằm trên đường thẳng đi qua điểm B và cắt đường thẳng AD tại điểm F. Độ dài đoạn thẳng A’F bằng? + Cho hàm số y = x3 – 3mx2 + 3(m2 – 1)x – m3 – m (với m là tham số) và điểm I(2;-2). Gọi S là tập hợp các giá trị của m để đồ thị hàm số đã cho có hai điểm cực trị A, B sao cho tam giác IAB nội tiếp đường tròn có bán kính bằng √5. Tích các phần tử của tập S là?