Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Kĩ thuật xử lí phương trình - hệ phương trình vô tỉ - Đoàn Trí Dũng

Tài liệu gồm 17 trang hướng dẫn các phương pháp xử lí phương trình – hệ phương trình vô tỉ thường gặp trong các đề thi. PHẦN I: PHƯƠNG PHÁP XÉT TỔNG VÀ HIỆU Phương pháp xét tổng và hiệu sử dụng cho các phương trình vô tỷ hoặc một phương trình có trong một hệ phương trình ở dạng √A ± √B = C. Điều kiện sử dụng ở chỗ ta nhận thấy C là một nhân tử của (A – B). PHẦN II: DỰ ĐOÁN NHÂN TỬ TỪ NGHIỆM VÔ TỶ Phương pháp này tận dụng nghiệm vô tỷ mà máy tính đã dò được để đoán trước nhân tử của phương trình, hệ phương trình. Để sử dụng kỹ thuật này, chúng ta cần phải nắm được tốt quy tắc dò nghiệm SHIFT SOLVE. PHẦN III: HỆ SỐ BẤT ĐỊNH Mục đích của phương pháp hệ số bất định là tạo ra các thêm bớt giả định sao cho có nhân tử chung rồi đồng nhất hệ số để tìm ra các giả định đó. Hệ số bất định có bản chất là phân tích nhân tử và có tác dụng mạnh trong các bài toán có nhiều hơn 1 nghiệm. [ads] PHẦN IV: ĐẠO HÀM MỘT BIẾN + Kỹ thuật 1: Coi x là ẩn, y là tham số, tính đạo hàm f’x(x, y) và chứng minh hàm số đơn điệu và liên tục theo x. + Kỹ thuật 2: Phương trình f(x) = 0 có tối đa 1 nghiệm nếu f(x) đơn điệu và liên tục theo x. + Kỹ thuật 3: f(x) = f(y) → x = y nếu f(x) đơn điệu và liên tục theo x. PHẦN V: LƯỢNG GIÁC HÓA PHẦN VI: ĐẶT 2 ẨN PHỤ + Kỹ thuật 1: Đặt 2 ẩn phụ để đưa về hệ phương trình cơ bản. + Kỹ thuật 2: Đặt 2 ẩn phụ để phân tích đa thức thành nhân tử. PHẦN VII: PHƯƠNG PHÁP ĐÁNH GIÁ + Kỹ thuật 1: Đưa phương trình, hệ phương trình về dạng A^2 + B^2 ≤ 0. + Kỹ thuật 2: Sử dụng Cauchy với những bài có căn bậc lớn. + Kỹ thuật 3: Sử dụng Bunyakovsky. + Kỹ thuật 4: Sử dụng Minkowski. + Kỹ thuật 5: Sử dụng Schwartz. + Kỹ thuật 6: Sử dụng bất đẳng thức Jensen dành cho hàm lồi, hàm lõm.

Nguồn: toanmath.com

Đọc Sách

Một số định hướng giải phương trình vô tỉ
Tài liệu gồm có 81 trang được biên soạn bởi thầy giáo Nguyễn Xuân Chung, hướng dẫn một số phương pháp tiếp cận và giải phương trình vô tỉ (phương trình chứa căn thức), giúp học sinh khối 10 học chuyên sâu chương trình Đại số 10 chương 3: phương trình và hệ phương trình. * Một số định hướng giải phương trình vô tỉ (Phần 1). + Giải phương trình đa thức bậc 4. 1. Sơ lược cách giải. 2. Bài luyện tập. 3. Xét trường hợp vô nghiệm. + Giải một số phương trình vô tỉ chứa căn bậc hai. * Một số định hướng giải phương trình vô tỉ (Phần 2). + Giải một số phương trình vô tỉ chứa căn bậc ba. 1. Cơ sở và định hướng giải. 2. Các ví dụ giải toán. 3. Hỗ trợ Casio trong giải toán. 4. Một số bài toán khác. 5. Luyện tập. * Một số định hướng giải phương trình vô tỉ (Phần 3). + Định hướng khái quát giải một lớp bài toán. 1. Đặt vấn đề. 2. Các ví dụ giải toán. 3. Luyện tập. * Một số định hướng giải phương trình vô tỉ (Phần 4). + Giải phương trình theo phương pháp trục căn thức và bình phương. 1. Đặt vấn đề. 2. Phương pháp nhẩm nghiệm hữu tỉ và trục căn. a. Nhẩm nghiệm hữu tỉ. b. Định hướng trục căn thức. c. Trường hợp hai nghiệm hữu tỉ. d. Luyện tập. * Một số định hướng giải phương trình vô tỉ (Phần 5). + Giải phương trình theo phương pháp trục căn thức và bình phương. Trường hợp nghiệm vô tỉ. a. Nhận xét và ví dụ. b. Luyện tập.
Phương pháp giải phương trình, bất phương trình, hệ phương trình vô tỉ
Tài liệu gồm có 109 trang được tổng hợp bởi thầy Trần Mạnh Tường hướng dẫn phương pháp giải phương trình, bất phương trình, hệ phương trình vô tỉ (cách gọi khác: phương trình, bất phương trình, hệ phương trình chứa căn; viết tắt: PT – HPT – BPT vô tỉ, PT – HPT – BPT chứa căn), đây là dạng toán điển hình trong chương trình Đại số 10 chương 3 (phương trình và hệ phương trình) và Đại số 10 chương 4 (bất đẳng thức và bất phương trình); tài liệu được phân dạng dựa theo các phương pháp giải toán; các bài toán trong tài liệu được phân tích và giải chi tiết. Khái quát nội dung tài liệu phương pháp giải phương trình, bất phương trình, hệ phương trình vô tỉ: I. Phương trình vô tỉ giải bằng phương pháp biến đổi tương đương. II. Phương trình vô tỉ thêm bớt thành hằng đẳng thức. III. Phương trình vô tỉ sử dụng phương pháp đặt ẩn phụ. 1. Đặt ẩn phụ hoàn toàn. 2. Đặt ẩn phụ không hoàn toàn. 3. Đặt ẩn phụ đưa về phương trình tích. 4. Đặt ẩn phụ đưa về hệ. [ads] IV. Phương trình vô tỉ nhân liên hợp. 1. Phương trình vô tỉ nhân liên hợp trực tiếp các biểu thức có sẵn trong phương trình. 2. Phương trình vô tỉ nhân liên hợp thêm bớt hằng số. 3. Phương trình vô tỉ nhân liên hợp thêm bớt biểu thức bậc nhất. V. Phương trình vô tỉ giải bằng phương pháp vectơ. VI. Phương trình vô tỉ đưa về dạng f(u) = f(v). VII. Phương trình vô tỉ sử dụng bất đẳng thức để đánh giá. VIII. Phương trình vô tỉ sử dụng bất đẳng thức Bunhiacopxki. IX. Phương trình vô tỉ sử dụng bất đẳng thức Cosi. X. Phương trình vô tỉ sử dụng tính đơn điệu của hàm số. XI. Phương trình vô tỉ sử dụng sự tương giao của đường tròn đường thẳng. XII. Phương trình vô tỉ sử dụng phương pháp lượng giác hóa. XI. Phương trình vô tỉ có tham số. XIV. Trắc nghiệm phương trình vô tỉ.
Chuyên đề phương trình và hệ phương trình - Nguyễn Chín Em
Tài liệu gồm 307 trang được biên soạn bởi thầy Nguyễn Chín Em, hướng dẫn giải các dạng toán phương trình và hệ phương trình thường gặp trong chương trình Đại số 10 chương 3; trong mỗi chủ đề, tài liệu tổng hợp lý thuyết cần nắm, phân dạng toán và chọn lọc các bài tập tự luận – trắc nghiệm tiêu biểu, có đáp án và lời giải chi tiết. Khái quát nội dung tài liệu chuyên đề phương trình và hệ phương trình – Nguyễn Chín Em: CHỦ ĐỀ 1 . ĐẠI CƯƠNG VỀ PHƯƠNG TRÌNH. I. KIẾN THỨC CƠ BẢN A Khái niệm phương trình. B Phương trình tương đương. 1 Phương trình tương đương. 2 Phép biến đổi tương đương. 3 Phương trình hệ quả. C Phương trình nhiều ẩn. D Phương trình chứa tham số. II. CÁC DẠNG BÀI TẬP Dạng 1. Tìm điều kiện xác định của phương trình. Dạng 2. Phương trình tương đương, phương trình hệ quả. Dạng 3. Giải phương trình có điều kiện. E Bài tập trắc nghiệm. [ads] CHỦ ĐỀ 2 . PHƯƠNG TRÌNH QUY VỀ BẬC NHẤT VÀ PHƯƠNG TRÌNH BẬC HAI. A Giải và biện luận phương trình bậc nhất. B Giải và biện luận phương trình bậc hai. 1 Giải và biện luận phương trình bậc hai. 2 Định lý Vi-ét – định lý Vi-ét đảo. C Phương trình chứa ẩn trong giá trị tuyệt đối, phương trình chứa ẩn trong dấu căn. D Các dạng bài tập thường gặp. 1 Phương trình cơ bản. 2 Phương pháp bình phương hai vế. 3 Phương pháp đặt ẩn phụ. 4 Phương pháp nhân lượng liên hợp. E Hệ thống bài tập tự luận. Dạng 1. Một số phương trình cơ bản. Dạng 2. Phương pháp bình phương hai vế. Dạng 3. Phương pháp đặt ẩn phụ. Dạng 4. Phương pháp nhân lượng liên hợp. Dạng 5. Bài toán chứa tham số. Dạng 6. Phương trình bậc nhất, bậc hai chứa tham số. Dạng 7. Tìm điều kiện tham số để phương trình có nghiệm thỏa mãn điều kiện cho trước. Dạng 8. Phương trình trùng phương. Dạng 9. Dùng định nghĩa, tính chất của giá trị tuyệt đối và phương pháp bình phương hai vế. Dạng 10. Giải phương trình chứa dấu giá trị tuyệt đối bằng cách đặt ẩn phụ. Dạng 11. Giải phương trình chứa dấu giá trị tuyệt đối có tham số. Dạng 12. Phương pháp nâng lên lũy thừa. Dạng 13. Phương pháp dùng hằng đẳng thức. Dạng 14. Đặt ẩn phụ. Dạng 15. Đặt ẩn phụ không hoàn toàn. Dạng 16. Đặt một ẩn phụ chuyển về hệ phương trình. Dạng 17. Đặt hai ẩn phụ. Dạng 18. Đặt hai ẩn phụ chuyển về giải một phương trình hai ẩn. Dạng 19. Phương pháp nhân liên hợp. Dạng 20. Phương pháp biến đổi thành phương trình tích. Dạng 21. Phương pháp đánh giá hai vế. F Bài tập trắc nghiệm. CHỦ ĐỀ 3 . PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH BẬC NHẤT NHIỀU ẨN. Dạng 1. Phương trình bậc nhất hai ẩn. Dạng 2. Hệ phương trình bậc nhất hai ẩn; hệ phương trình bậc nhất ba ẩn (không chứa tham số). Dạng 3. Hệ phương trình bậc nhất hai ẩn có tham số. A Bài tập trắc nghiệm. B Hệ phương trình đối xứng. Dạng 4. Hệ phương trình đối xứng loại I. Dạng 5. Hệ phương trình đối xứng loại II. C Hệ đẳng cập bậc hai. Chuyên đề 1 : Giải hệ phương trình bằng phương pháp thế. Dạng 6. Phương pháp thế ẩn. Dạng 7. Phương pháp thế biểu thức. Dạng 8. Phương pháp thế số. Chuyên đề 2 : Giải hệ phương trình bằng phương pháp đặt ẩn phụ. Dạng 9. Đặt ẩn phụ dạng đại số. Dạng 10. Đặt ẩn phụ dạng tổng – hiệu. Dạng 11. Đặt ẩn phụ trong hệ có căn. Dạng 12. Sử dụng hình giải tích. Chuyên đề 3 : Cách nhận dạng hệ giải bằng phương pháp nhân liên hợp. Dạng 13. Nhân liên hợp trực tiếp hai căn có sẵn trong phương trình. Dạng 14. Thêm bớt hằng số để nhân liên hợp. Dạng 15. Thêm bớt một biểu thức để nhân liên hợp.
Các dạng toán trắc nghiệm bất đẳng thức và bất phương trình
Tài liệu gồm 147 trang được biên soạn bởi thầy Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm bất đẳng thức và bất phương trình thường gặp trong chương trình Đại số 10 chương 4, các bài toán được phân dạng, có đáp án và lời giải chi tiết. Khái quát nội dung tài liệu các dạng toán trắc nghiệm bất đẳng thức và bất phương trình: Chủ đề 1 . Bất đẳng thức. Dạng 1. Tính chất của bất đẳng thức. Dạng 2. Bất đẳng thức Cosi và ứng dụng. Chủ đề 2 . Bất phương trình và hệ bất phương trình. Dạng 1. Tìm điều kiện xác định của bất phương trình. Dạng 2. Bất phương trình và hệ bất phương trình tương đương. Dạng 3. Sử dụng các phép biến đổi tương đương để giải bất phương trình một ẩn. Dạng 4. Sử dụng các phép biến đổi tương đương giải hệ bất phương trình một ẩn. Dạng 5. Bất phương trình, hệ bất phương trình chứa tham số. Chủ đề 3 . Dấu nhị thức bậc nhất. Dạng 1. Dấu nhị thức bậc nhất. Dạng 2. Giải bất phương trình tích. Dạng 3. Giải bất phương trình chứa ẩn ở mẫu. Dạng 4. Giải bất phương trình chứa dấu giá trị tuyệt đối. [ads] Chủ đề 4 . Hệ bất phương trình bậc nhất hai ẩn. Dạng 1. Tìm nghiệm bất phương trình bậc nhất hai ẩn. Dạng 2. Tìm miền nghiệm của hệ bất phương trình bậc nhất hai ẩn. Dạng 3. Tìm giá trị nhỏ nhất và giá trị lớn nhất. Dạng 4. Áp dụng giải bài toán thực tế. Chủ đề 5 . Dấu tam thức bậc hai. Dạng 1. Tam thức bậc hai. + Xét dấu tam thức bậc hai. + Giải bất phương trình bậc hai và một số bài toán liên quan. Dạng 2. Bất phương trình tích. Dạng 3. Bất phương trình chứa ẩn ở mẫu. Dạng 4. Hệ bất phương trình bậc hai và các bài toán liên quan. Dạng 5. Bài toán chứa tham số. + Tìm m để phương trình có n nghiệm. + Tìm m để phương trình bậc 2 có nghiệm thỏa mãn điều kiện cho trước. + Tìm m để bất phương trình thỏa mãn điều kiện cho trước. + Tìm m để hệ bất phương trình bậc hai thỏa mãn điều kiện cho trước. Dạng 6. Bất phương trình chứa dấu giá trị tuyệt đối và một số bài toán liên quan. Dạng 7. Bất phương trình chứa căn và một số bài toán liên quan.