Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài toán tìm hình chiếu của điểm trên mặt phẳng tọa độ

Tài liệu gồm 13 trang được biên soạn bởi tập thể quý thầy, cô giáo Nhóm Word Và Biên Soạn Tài Liệu Môn Toán THPT 2020, hướng dẫn giải bài toán tìm hình chiếu của điểm trên mặt phẳng tọa độ, được phát triển dựa trên câu 13 đề thi tham khảo THPT Quốc gia môn Toán năm học 2019 – 2020 do Bộ Giáo dục và Đào tạo công bố. Giới thiệu sơ lược về tài liệu bài toán tìm hình chiếu của điểm trên mặt phẳng tọa độ: 1. Cho điểm M(x;y;z): Hình chiếu của điểm M trên Ox là M1(x;0;0); Hình chiếu của điểm M trên Oy là M2(0;y;0); Hình chiếu của điểm M trên Oz là M3(0;0;z); Hình chiếu của điểm M trên (Oxy) là M4(x;y;0); Hình chiếu của điểm M trên (Oyz) là M5(0;y;z); Hình chiếu của điểm trên (Ozx) là M6(x;0;z). 2. Tìm hình chiếu của điểm A trên mặt phẳng (α). + Viết phương trình đường thẳng d đi qua A và vuông góc với (α). + Hình chiếu H của điểm A là giao điểm của đường thẳng d và (α). [ads] 3. Tìm hình chiếu d’ của đường thẳng d trên mặt phẳng (α). Cách 1 : – Nếu đường thẳng d song song với (α) thì d // d’. + Lấy điểm M thuộc đường thẳng d và tìm hình chiếu M’ của điểm M trên (α). + Đường thẳng d’ đi qua M’ và song song với đường thẳng d. – Nếu đường thẳng d cắt (α) tại M. + Lấy điểm N thuộc đường thẳng d và tìm hình chiếu N’ của N trên (α). + Đường thẳng d’ đi qua hai điểm là M và N’. Cách 2 : + Viết phương trình mặt phẳng (β) chứa đường thẳng d và vuông góc với (α). + Khi đó đường thẳng d’ là giao tuyến của hai mặt phẳng (α) và (β). 4. Tìm hình chiếu A’ của A trên đường thẳng d. Cách 1 : + Viết phương trình mặt phẳng (P) chứa A và vuông góc với d. + Hình chiếu A’ là giao điểm của d và (P). Cách 2 : + Tìm tọa độ điểm A’ theo tham số t (A’ thuộc d). + Lập phương trình AA’.ud = 0. Giải phương trình tìm t suy ra tọa độ điểm A’. 5. Tìm điểm M’ đối xứng với M qua (P). + Tìm hình chiếu H của M trên (P) (khi đó H là trung điểm MM’). + Áp dụng công thức tính tọa độ trung điểm suy ra tọa độ điểm M’.

Nguồn: toanmath.com

Đọc Sách

Bài toán tìm điểm trong không gian
Tài liệu gồm 18 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bài toán tìm điểm trong không gian, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 3. Dạng 1: Tìm hình chiếu vuông góc của điểm trên đường thẳng hoặc mặt phẳng. Dạng 2: Tìm điểm M thuộc đường thẳng d thỏa mãn điều kiện K cho trước. Dạng 3: Tìm điểm M trên mặt phẳng (P) sao cho MA = MB = MC. Dạng 4: Tìm điểm M trên mặt phẳng (P) sao cho MA = MB và điểm M thỏa mãn điều kiện K cho trước. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Bài toán về phương trình mặt cầu
Tài liệu gồm 27 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bài toán về phương trình mặt cầu, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 3. Dạng 1: Lập phương trình mặt cầu. Dạng 2: Bài toán mặt cầu tiếp xúc với mặt phẳng. Dạng 3: Bài toán tương giao mặt cầu với mặt phẳng. Dạng 4: Bài toán tương giao mặt cầu với đường thẳng. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Bài toán viết phương trình đường thẳng
Tài liệu gồm 30 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bài toán viết phương trình đường thẳng, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 3. Dạng 1: Viết phương trình đường thẳng khi biết vectơ chỉ phương. Dạng 2: Viết phương trình đường thẳng khi biết cặp vectơ pháp tuyến. Dạng 3: Lập phương trình đường thẳng d’ qua A cắt d và vuông góc với ∆ (hoặc song song với (P)). Dạng 4: Lập phương trình đường thẳng ∆ cắt d1 và d2 đồng thời song song với d (hoặc vuông góc với (P), hoặc đi qua điểm M). Dạng 5: Viết phương trình đường phân giác của hai đường thẳng. Dạng 6: Viết phương trình đường thẳng liên quan đến góc và khoảng cách. Dạng 7: Viết phương trình đường thẳng vuông góc chung của hai đường thẳng chéo nhau. Dạng 8: Viết phương trình đường thẳng ∆ là hình chiếu vuông góc của d lên mặt phẳng (P). BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Bài toán viết phương trình mặt phẳng
Tài liệu gồm 30 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bài toán viết phương trình mặt phẳng, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 3. I. LÝ THUYẾT TRỌNG TÂM II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI Dạng 1: Viết phương trình mặt phẳng khi biết vectơ pháp tuyến. Dạng 2: Viết phương trình mặt phẳng liên quan đến khoảng cách. Dạng 3: Phương trình mặt phẳng theo đoạn chắn. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.