Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL lần 3 lớp 11 môn Toán năm 2022 2023 trường THPT Nguyễn Viết Xuân Vĩnh Phúc

Nội dung Đề KSCL lần 3 lớp 11 môn Toán năm 2022 2023 trường THPT Nguyễn Viết Xuân Vĩnh Phúc Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi khảo sát chất lượng lần 3 môn Toán lớp 11 năm học 2022 – 2023 trường THPT Nguyễn Viết Xuân, tỉnh Vĩnh Phúc; đề thi mã đề 111, hình thức trắc nghiệm với 50 câu, thời gian làm bài: 90 phút, không kể thời gian phát đề. Trích dẫn đề KSCL lần 3 Toán lớp 11 năm 2022 – 2023 trường THPT Nguyễn Viết Xuân – Vĩnh Phúc : + Cho dãy số gồm 3 số hạng 1 2 3 u u u theo thứ tự lập thành cấp số nhân. Nếu ta trừ số hạng thứ ba cho 4 thì ta được dãy số theo thứ tự là một cấp số cộng. Nếu ta trừ số hạng thứ hai và thứ ba của cấp số cộng vừa thu được cho 1 thì dãy số mới thu được theo thứ tự là một cấp số nhân. Biết 2 u 1. Biểu thức 1 2 3 u u u có giá trị bằng? + Cho hình chóp S ABC có đáy là tam giác nhọn. Gọi H là trực tâm của tam giác ABC. Qua H lần lượt kẻ các đường thẳng song song với SA SB SC cắt các mặt phẳng SBC SCA SAB tại các điểm M N P. Giá trị của biểu thức HM HN HN SA SB SC bằng? + Một tổ có 15 học sinh trong đó có 10 nam và 5 nữ. Giáo viên cần chọn ra hai học sinh gồm một học sinh nam và một học sinh nữ. Hỏi có bao nhiêu cách chọn? Chọn khẳng định đúng trong các khẳng định sau: A. Ba đường thẳng phân biệt đôi một cắt nhau thì chúng đồng quy tại một điểm. B. Ba đường thẳng phân biệt đôi một song song thì chúng cùng nằm trên một mặt phẳng. C. Ba đường thẳng phân biệt đôi một cắt nhau thì chúng cùng nằm trên một mặt phẳng. D. Ba đường thẳng phân biệt đôi một cắt nhau tại 3 điểm phân biệt thì chúng đồng phẳng.

Nguồn: sytu.vn

Đọc Sách

Đề thi thử Toán 11 THPT Quốc gia 2020 lần 1 trường Ngô Quyền Hải Phòng
Chủ Nhật ngày 29 tháng 12 năm 2019, trường THPT Ngô Quyền – Hải Phòng tổ chức kỳ thi thử Trung học Phổ thông Quốc gia năm 2020 môn Toán 11 lần thứ nhất năm học 2019 – 2020. Đề thi thử Toán 11 THPT Quốc gia 2020 lần 1 trường Ngô Quyền – Hải Phòng mã đề 111 gồm có 06 trang với 50 câu trắc nghiệm, học sinh có 90 phút để làm bài thi. Trích dẫn đề thi thử Toán 11 THPT Quốc gia 2020 lần 1 trường Ngô Quyền – Hải Phòng : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, O là giao điểm hai đường chéo AC và BD. Gọi I, J, K lần lượt là trung điểm các cạnh BC, AD, SC và H là một điểm trên cạnh BC, H không trùng với B. Gọi d là giao tuyến của hai mặt phẳng (SAH) và (IJK). Tìm mệnh đề sai trong các mệnh đề sau: A. d đi qua giao điểm của AH và KI đồng thời d song song với KO. B. d đi qua giao điểm của AH và IJ đồng thời d song song với SA. C. d đi qua giao điểm của AH và IJ đồng thời d song song với KO. D. d đi qua giao điểm của SH và IK đồng thời d song song với SA. + Mệnh đề nào sau đây đúng? A. Qua ba điểm xác định một và chỉ một mặt phẳng. B. Qua ba điểm phân biệt không thẳng hàng xác định một và chỉ một mặt phẳng. C. Qua ba điểm phân biệt xác định một và chỉ một mặt phẳng. D. Qua ba điểm phân biệt không thẳng hàng xác định hai mặt phẳng phân biệt. [ads] + Một nhân viên được nhận vào làm việc ở tập đoàn S với mức lương 10.000.000 VND/tháng và thỏa thuận nếu hoàn thành tốt công việc thì sau một quý (3 tháng) công ty sẽ tăng cho anh thêm 500.000 VND/tháng. Hỏi sau ít nhất bao nhiêu năm thì lương của anh ta sẽ được trên 20.000.000 VND/tháng (giả thiết: nhân viên đó luôn hoàn thành tốt công việc). + Một dãy phố có bảy cửa hàng bán đồ lưu niệm. Có bảy khách hàng, mỗi người chọn vào một trong bảy cửa hàng đó một cách ngẫu nhiên. Tính xác suất để một cửa hàng có một khách vào, một cửa hàng có hai khách vào, một cửa hàng có bốn khách vào và bốn cửa hàng còn lại không có người khách nào vào. + Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, đáy nhỏ AB = n, đáy lớn CD = m (m, n là các số thực dương, m > n). Các cạnh bên thỏa mãn SA = SB, SC = SD. Gọi O là giao điểm hai đường chéo AC và BD. Lấy điểm I trên đoạn SO sao cho IS/IO = k. Gọi (alpha) là mặt phẳng đi qua AI và song song với CD. Tìm điều kiện của k để thiết diện của hình chóp S.ABCD với mặt phẳng (alpha) là một hình chữ nhật.
Đề khảo sát Toán 11 lần 2 năm 2019 - 2020 trường Tam Dương - Vĩnh Phúc
Ngày … tháng 01 năm 2020, trường THPT Tam Dương, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát kiến thức THPT môn Toán 11 lần 2 năm học 2019 – 2020. Đề khảo sát Toán 11 lần 2 năm 2019 – 2020 trường Tam Dương – Vĩnh Phúc mã đề 123 gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề khảo sát Toán 11 lần 2 năm 2019 – 2020 trường Tam Dương – Vĩnh Phúc : + Xét phép thử gieo một con súc sắc cân đối và đồng chất hai lần liên tiếp. Gọi X là biến cố “Lần đầu xuất hiện mặt 6 chấm” và Y là biến cố “Lần thứ hai xuất hiện mặt 6 chấm”. Trong các khẳng định sau, khẳng định nào sai? A. X ∩ Y là biến cố “Tổng số chấm xuất hiện của hai lần gieo bằng 12”. B. X và Y là hai biến cố xung khắc. C. X ∪ Y là biến cố “Ít nhất một lần xuất hiện mặt 6 chấm”. D. X và Y là hai biến cố độc lập. + Trong hội chợ, một công ty sơn muốn xếp 1089 hộp sơn theo số lượng 1, 3, 5 … từ trên xuống dưới (số hộp sơn trên mỗi hàng xếp từ trên xuống dưới là các số lẻ liên tiếp – mô hình như hình bên dưới). Hàng cuối cùng có bao nhiêu hộp sơn? [ads] + Xét một bảng ô vuông gồm 4 x 4 ô vuông. Người ta điền vào mỗi ô vuông đó một trong hai số 1 hoặc −1 sao cho tổng các số trong mỗi hàng và tổng các số trong mỗi cột đều bằng 0. Hỏi có bao nhiêu cách? + Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD), cạnh AB = 3a, AD = CD = a. Tam giác SAB cân tại S, SA = 2a. Mặt phẳng (P) song song với SA, AB cắt các cạnh AD, BC, SC, SD theo thứ tự tại M, N, P, Q. Đặt AM = x (0 < x < a). Gọi x là giá trị để tứ giác MNPQ ngoại tiếp được đường tròn, bán kính đường tròn đó là? + Cho hai đường thẳng chéo nhau a và b. Lấy các điểm phân biệt A, B thuộc a, C, D thuộc b. Khẳng định nào sau đây đúng? A. AD cắt BC. B. AD và BC cùng nằm trên một mặt phẳng. C. AD song song với BC. D. AD chéo BC.
Đề khảo sát Toán 11 lần 1 năm 2019 - 2020 trường Thuận Thành 1 - Bắc Ninh
Ngày … tháng 01 năm 2020, trường THPT Thuận Thành số 1, tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng lần 1 môn Toán lớp 11 năm học 2019 – 2020. Đề khảo sát Toán 11 lần 1 năm 2019 – 2020 trường Thuận Thành 1 – Bắc Ninh mã đề 132 gồm có 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 132, 209, 357, 485. Trích dẫn đề khảo sát Toán 11 lần 1 năm 2019 – 2020 trường Thuận Thành 1 – Bắc Ninh : + Để trang trí cho quán trà sữa sắp mở cửa của mình, bạn Giang quyết định tô màu một mảng tường hình vuông cạnh bằng 2m. Phần tô màu dự kiến là các hình vuông nhỏ được đánh số lần lượt là 1, 2, 3 ….. n (các hình vuông được tô màu chấm bi), trong đó cạnh của hình vuông kế tiếp bằng một nửa cạnh hình vuông trước đó (hình vẽ). Giả sử quá trình tô màu của Giang có thể diễn ra nhiều giờ. Hỏi bạn Giang tô màu đến hình vuông thứ mấy thì diện tích của hình vuông được tô bắt đầu nhỏ hơn. + Công ty A chuyên sản xuất một loại sản phẩm, bộ phận sản xuất ước tính rằng với q sản phẩm được sản xuất một tháng thì tổng chi phí sẽ là C(q) = 3q^2 + 64q – 9999 (đơn vị tiền tệ). Giá của mỗi sản phẩm được công ty bán với giá R(q) = 160 – 3q. Hãy xác định số sản phẩm công ty A cần sản xuất trong một tháng (giả sử công ty này bán hết được số sản phẩm mình làm ra) để thu về lợi nhuận cao nhất? [ads] + Trường THPT Thuận Thành 1, tỉnh Bắc Ninh tổ chức trao thưởng cho học sinh nghèo vượt khó. Trường chuẩn bị các phần thưởng là 11 quyển sổ, 10 cặp sách và 9 hộp bút (các sản phẩm cùng loại và giống nhau). Nhà trường chọn 15 học sinh để trao phần thưởng sao cho mỗi học sinh đều nhận được hai phần thưởng khác loại, trong số đó có bạn An và Bình. Tính xác suất để An và Bình nhận được phần thưởng giống nhau. + Cho tứ diện ABCD, gọi E, F lần lượt là trung điểm của AB, CD; G là trọng tâm tam giác BCD. Giao điểm của đường thẳng EG và mặt phẳng ACD là? A. Giao điểm của đường thẳng EG và CD. B. Giao điểm của đường thẳng EG và AC. C. Giao điểm của đường thẳng EG và AF. D. Điểm F. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi G1, G2 lần lượt là trọng tâm của các tam giác SAB và SAD. Khi đó đường thẳng G1G2? A. cắt mặt phẳng (ABCD). B. song song với mặt phẳng (SCD). C. song song với mặt phẳng (SBC). D. song song với mặt phẳng (ABCD).
Đề thi thử Toán 11 THPT QG 2019 - 2020 lần 1 trường Yên Phong 1 - Bắc Ninh
Nhằm giúp học sinh khối 11 sớm được rèn luyện để chuẩn bị cho kỳ thi THPT Quốc gia năm 2021, vừa qua, trường THPT Yên Phong số 1, tỉnh Bắc Ninh tổ chức kỳ thi thử THPT Quốc gia môn Toán 11 năm học 2019 – 2020 lần thứ nhất. Đề thi thử Toán 11 THPT QG năm học 2019 – 2020 lần 1 trường THPT Yên Phong số 1 – Bắc Ninh mã đề 668 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, nội dung kiểm tra thuộc chương trình Toán 10 và Toán 11 học sinh đã được học, đề thi có đáp án. Trích dẫn đề thi thử Toán 11 THPT QG 2019 – 2020 lần 1 trường Yên Phong 1 – Bắc Ninh : + Cho phép thử T với không gian mẫu Ω và A, B là hai biến cố liên quan đến T. Mệnh đề nào sau đây sai? A. Nếu A và B xung khắc thì P(A ∪ B) = P(A) + P(B). B. Nếu A và B đối nhau thì A và B xung khắc. C. Nếu A và B độc lập thì P(A.B) = P(A).P(B) D. Nếu A và B xung khắc thì A và B đối nhau. + Năm nay, bạn Minh đang học lớp 11. Hết học kỳ 1, bạn đạt kết quả học tập tốt, nên đầu tháng 1/2020, bố bạn quyết định mang số tiền dành dụm 100 triệu đồng mang ra ngân hàng gửi tiết kiệm để chuẩn bị sang năm cho bạn đi học Đại học Biết rằng, tiền gửi ngân hàng được tính theo hình thức lãi kép, với lãi suất không kỳ hạn là 0,6%/tháng (lãi được nhập vào gốc sau mỗi tháng). Hỏi nếu hết tháng 8/2021, bố bạn đi rút tiền ngân hàng, sẽ rút được bao nhiêu tiền? (kết quả làm tròn đến hàng trăm nghìn). A. 110.900.000 đồng. B. 112.000.000 đồng. C. 113.300.000 đồng. D. 112.700.000 đồng. [ads] + Cho bốn điểm A, B, C, D không đồng phẳng. Gọi M, N lần lượt là trung điểm của các đoạn thẳng AB, AD. Gọi d là giao tuyến của hai mặt phẳng (BCD) và (CMN). Chọn khẳng định sai? A. MN, BD, d là ba đường thẳng đồng quy. B. d // MN. C. d // BD. D. d đi qua C. + Đề kiểm tra trắc nghiệm môn Toán 11 gồm 25 câu, mỗi câu có bốn phương án trả lời trong đó có duy nhất một phương án đúng. Trả lời đúng mỗi câu được 0.4 điểm, trả lời sai không có điểm cho câu đó. Một học sinh không học bài nên làm bài bằng cách chọn ngẫu nhiên một phương án trả lời cho mỗi câu hỏi. Biết rằng có 3 câu bạn đó đã chắc chắn đã loại được một phương án sai. Xác suất để bạn đó được 2 điểm gần nhất với số nào sau đây? + Trong các khẳng định sau, hãy chọn khẳng định đúng? A. Trong không gian, hai đường thẳng cùng cắt một đường thẳng khác thì cắt nhau. B. Trong không gian, hai mặt phẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau. C. Trong không gian, hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau. D. Trong không gian, hai mặt phẳng phân biệt cùng song song với một đường thẳng thì song song với nhau.