Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 11 năm 2023 - 2024 trường THPT Hậu Lộc 4 - Thanh Hóa

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi môn Toán 11 năm học 2023 – 2024 trường THPT Hậu Lộc 4, tỉnh Thanh Hóa. Đề thi được biên soạn theo định dạng trắc nghiệm mới nhất, với nội dung gồm 03 phần: Câu hỏi trắc nghiệm có nhiều phương án lựa chọn; Câu trắc nghiệm đúng sai; Câu trắc nghiệm trả lời ngắn. Đề thi có đáp án và hướng dẫn chấm điểm mã đề 001 002 003 004. Trích dẫn Đề học sinh giỏi Toán 11 năm 2023 – 2024 trường THPT Hậu Lộc 4 – Thanh Hóa : + Khi gửi tiền trong ngân hàng, anh An gửi 500 triệu đồng theo hình thức lãi kép kì hạn 1 năm với lãi suất 5,6%/năm. Hỏi sau 3 năm người đó có bao nhiêu tiền cả gốc và lãi? (đơn vị: triệu đồng, kết quả làm tròn đến hàng phần trăm). + Mùa hè năm 2023, để chuẩn bị cho “học kì quân đội” dành cho các bạn nhỏ, một đơn vị bộ đội chuẩn bị thực phẩm cho các bạn nhỏ, dự kiến đủ dùng trong 45 ngày (năng suất ăn của mỗi ngày là như nhau). Nhưng bắt đầu từ ngày thứ 11, do số lượng thành viên tham gia tăng lên, nên lượng tiêu thụ thực phẩm tăng lên 10% mỗi ngày (ngày sau tăng 10% so với ngày trước đó). Hỏi thực tế lượng thức ăn đó đủ dùng cho bao nhiêu ngày? + Cho hình chóp S.ABCD có tất cả các cạnh đều bằng 8. Gọi M là trung điểm của cạnh SB và N là một điểm bất kỳ thuộc cạnh CD sao cho CN x (0 8). Mặt phẳng (α) chứa đường thẳng MN và song song đường thẳng AD cắt hình chóp S.ABCD theo một thiết diện có diện tích nhỏ nhất bằng c 2. Hỏi giá trị c bằng bao nhiêu?

Nguồn: toanmath.com

Đọc Sách

Đề Olympic lớp 11 môn Toán năm 2019 cụm trường THPT Hà Đông – Hoài Đức – Hà Nội
Nội dung Đề Olympic lớp 11 môn Toán năm 2019 cụm trường THPT Hà Đông – Hoài Đức – Hà Nội Bản PDF Sytu giới thiệu đến bạn đọc đề thi Olympic Toán lớp 11 năm học 2018 – 2019 cụm trường THPT Hà Đông – Hoài Đức – Hà Nội, đề gồm 01 trang với 05 bài toán dạng tự luận, thang điểm bài thi là 20 điểm, học sinh có 150 phút để làm bài thi. Trích dẫn đề Olympic Toán lớp 11 năm 2019 cụm trường THPT Hà Đông – Hoài Đức – Hà Nội : + Trong một hộp kín đựng 100 tấm thẻ như nhau được đánh số từ 1 đến 100. Lấy ngẫu nhiên ba tấm thẻ trong hộp. Tính xác suất để lấy được ba tấm thẻ mà ba số ghi trên ba tấm thẻ đó lập thành một cấp số cộng. [ads] + Cho hình hộp ABCD.A’B’C’D’ có tất cả các cạnh bằng nhau. Điểm M di động trên cạnh AB, điểm N di động trên cạnh A’D’ sao cho A’N = 2AM. Gọi (a) là mặt phẳng chứa MN và song song với AC. Dựng thiết diện của hình hộp bởi (a) và chứng minh rằng (a) luôn chứa một đường thẳng cố định. + Cho tứ diện ABCD. Chứng minh rằng: (AB + CD)^2 + (AD + BC)^2 > (AC + BD)?.
Đề học sinh giỏi lớp 11 môn Toán cấp trường năm 2018 2019 trường Lưu Hoàng Hà Nội
Nội dung Đề học sinh giỏi lớp 11 môn Toán cấp trường năm 2018 2019 trường Lưu Hoàng Hà Nội Bản PDF Đề học sinh giỏi Toán lớp 11 cấp trường năm học 2018 – 2019 trường THPT Lưu Hoàng – Hà Nội có đáp án và lời giải chi tiết. Trích dẫn đề học sinh giỏi Toán lớp 11 cấp trường năm 2018 – 2019 trường Lưu Hoàng – Hà Nội : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh SA = a và vuông góc với mặt phẳng (ABCD). a) Chứng minh rằng các mặt bên của hình chóp là những tam giác vuông. b) M là điểm di động trên đoạn BC và BM = x, K là hình chiếu của S trên DM. Tính độ dài đoạn SK theo a và x. Tính giá trị nhỏ nhất của đoạn SK. + Một người bỏ ngẫu nhiên 4 lá thư và 4 chiếc phong bì thư đã để sẵn địa chỉ. Tính xác suất để có ít nhất một lá thư bỏ đúng địa chỉ. + Trong mặt phẳng Oxy, cho đường tròn (C1), đường tròn (C2). a) Tìm giao điểm của hai đường tròn (C1) và (C2). b) Gọi giao điểm có tung độ dương của (C1) và (C2) là A viết phương trình đường thẳng đi qua A cắt (C1) và (C2) theo hai dây cung có độ dài bằng nhau.
Đề Olympic lớp 11 môn Toán năm 2019 cụm THPT Thanh Xuân Cầu Giấy Thường Tín – Hà Nội
Nội dung Đề Olympic lớp 11 môn Toán năm 2019 cụm THPT Thanh Xuân Cầu Giấy Thường Tín – Hà Nội Bản PDF Đề Olympic Toán lớp 11 năm 2019 cụm THPT Thanh Xuân & Cầu Giấy & Thường Tín – Hà Nội nhằm giao lưu đội tuyển học sinh giỏi môn Toán khối 11 của ba trường: trường THPT Thanh Xuân (Hà Nội), trường THPT Cầu Giấy (Hà Nội), trường THPT Thường Tín (Hà Nội), đề thi được biên soạn theo dạng tự luận với 05 bài toán, học sinh làm bài trong 120 phút (không kể thời gian giám thị coi thi phát đề), lời giải chi tiết của đề thi được biên soạn bởi tập thể quý thầy, cô giáo nhóm Diễn Đàn Giáo Viên Toán. Trích dẫn đề Olympic Toán lớp 11 năm 2019 cụm THPT Thanh Xuân & Cầu Giấy & Thường Tín – Hà Nội : + Hoa có 11 bì thư và 7 tem thư khác nhau. Hoa cần gửi thư cho 4 người bạn, mỗi người 1 thư. Hỏi Hoa có bao nhiêu cách chọn ra 4 bì thư và 4 tem thư, sau đó dán mỗi tem thư lên mỗi bì thư để gửi đi? + Một bài thi Olympic Toán lớp 11 hình thức trắc nghiệm khách quan gồm 5 câu hỏi, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án trả lời đúng, 3 phương án sai. Tính xác suất để một học sinh làm bài thi trả lời đúng được ít nhất 3 câu hỏi? [ads] + Cho tứ diện ABCD. 1) Gọi E, F, G lần lượt là trọng tâm các tam giác ABC, ACD, ABD. a) Chứng minh (EFG) // (BCD). b) Tính diện tích tam giác EFG theo diện tích của tam giác BCD. 2) M là điểm thuộc miền trong của tam giác BCD. Kẻ qua M đường thẳng d // AB. a) Xác định giao điểm B’ của đường thẳng d và mặt phẳng (ACD). b) Kẻ qua M các đường thẳng lần lượt song song với AC và AD cắt các mặt phẳng (ABD), (ABC) theo thứ tự tại C’, D’. Chứng minh rằng: MB’/AB + MC’/AC + MD’/AD = 1. c) Tìm giá trị nhỏ nhất của biểu thức T = √AB/MB’ + √AC/MC’ + √AD/MD’.