Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề tỉ số của hai số, tỉ số phần trăm, biểu đồ phần trăm

Tài liệu gồm 10 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tỉ số của hai số, tỉ số phần trăm, biểu đồ phần trăm, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 3: Phân số. Mục tiêu : Kiến thức: + Hiểu được ý nghĩa và biết cách tìm tỉ số của hai số, tỉ số phần trăm, tỉ lệ xích. + Biết cách đọc các biểu đồ phần trăm dạng cột, ô vuông và hình quạt. Kĩ năng: + Biết cách dựng các biểu đồ phần trăm dạng cột, ô vuông, hình quạt. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Tìm tỉ số của hai số. Tỉ số hai số a và b b 0 là a b. Khái niệm tỉ số thường được dùng khi nói về thương của hai đại lượng (cùng loại và cùng đơn vị đo). Chú ý: + Tỉ số không có đơn vị đo. + Tỉ số của a và b khác b a (tỉ số của b và a). Dạng 2 : Tỉ số phần trăm và biểu đồ phần trăm. Tỉ số phần trăm của hai số a và b là. a% của số M bằng. b% của một số bằng x thì số đó bằng? Dạng 3 : Tỉ lệ xích. a là khoảng cách giữa hai điểm trên bản đồ. B là khoảng cách thực tế của hai điểm này. T là tỉ lệ xích. Chú ý: a và b có cùng đơn vị đo.

Nguồn: toanmath.com

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề phép cộng và phép trừ số nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề phép cộng và phép trừ số nguyên, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT 1. Quy tắc cộng và trừ hai số nguyên. * Quy tắc cộng hai số nguyên được xác định như sau: + Cộng hai số nguyên dương chính là cộng hai số tự nhiên khác 0. + Muốn cộng hai số nguyên âm: Bước 1: Bỏ dấu “-” trước mỗi số. Bước 2: Tính tổng của hai số nhận được ở Bước 01. Bước 3: Thêm dấu “-” trước tổng nhận được ở Bước 2, ta có tổng cần tìm. + Hai số nguyên đối nhau có tổng bằng 0. + Muốn cộng hai số nguyên khác dấu: Bước 1: Bỏ dấu “-” trước số nguyên âm, giữ nguyên số còn lại. Bước 2: Trong hai số nguyên dương nhận được ở Bước 1, ta lấy số lớn hơn trừ đi số nhỏ hơn. Bước 3: Cho hiệu vừa nhận được dấu ban đầu của số lớn hơn ở Bước 2, ta có tổng cần tìm. * Quy tắc trừ hai số nguyên được xác định như sau: Muốn trừ số nguyên a cho số nguyên b, ta cộng a với số đối của b. 2. Tính chất. Phép cộng số nguyên có các tính chất sau: • Giao hoán: a + b = b + a. • Kết hợp: (a + b) + c = a + (b + c). • Cộng với số 0: a + 0 = 0 + a = a. • Cộng với số đối: a + (- a) = (- a) + a = 0. 3. Các dạng toán thường gặp. 1. Dạng 1: Cộng trừ hai số nguyên. 2. Dạng 2: Tìm số chưa biết. 3. Dạng 3: Toán có lời văn. B. BÀI TẬP Dạng 1: Cộng trừ hai số nguyên. Phương pháp giải: + Sử dụng quy tắc cộng, trừ hai số nguyên. + Tính chất phép cộng số nguyên. + Thứ tự thực hiện phép tính. + Quan sát, tính nhanh nếu có thể. Thường hay sử dụng tính chất giao hoán, kết hợp, cộng với số đối, cũng có khi cộng các số dương với nhau, cộng các số âm với nhau. Dạng 2: Tìm số chưa biết. + Xét xem: Điều cần tìm đóng vai trò là gì trong phép toán (số hạng, số trừ, số bị trừ). (Số hạng) = (Tổng) – (Số hạng đã biết). (Số trừ) = (Số bị trừ) – (Hiệu). (Số bị trừ) = (Hiệu) + (Số trừ). + Chú ý thứ thứ tự trong tập hợp số nguyên và cách tính tổng cách đều. Dạng 3: Toán có nội dung thực tế. Căn cứ vào nội dung bài toán để đưa về phép cộng, trừ các số nguyên cùng dấu hoặc khác dấu.
Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề tập hợp các số nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề tập hợp các số nguyên, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT 1. Số nguyên âm, số nguyên dương, tập hợp các số nguyên. – Các số tự nhiên (khác 0): 1, 2, 3, 4, 5 … được gọi là các số nguyên dương. – Các số -1, -2, -3 …. gọi là các số nguyên âm. – Tập hợp các số nguyên gồm các số nguyên âm, số 0 và các số nguyên dương. Kí hiệu là tập Z. Chú ý: – Số 0 không là số nguyên âm cũng không là số nguyên dương. – Đôi khi ta còn viết dấu “+” ngay trước số nguyên dương. Ví dụ số 6 còn được viết +6 (đọc là dương sáu). 2. Thứ tự trong tập số nguyên. a. Trục số. – Ta biểu diễn các số 1, 2, 3 …. và các số nguyên âm -1, -2, -3 … khi đó ta được một trục số gốc O (Hình 1). – Chiều từ trái sang phải là chiều dương, chiều ngược lại là chiều âm. – Điểm biểu diễn số nguyên a gọi là điểm a. – Cho hai số nguyên a, b. Trên trục số, nếu điểm a nằm trước điểm b thì a nhỏ hơn b, hay a b. Chú ý : Có thể có hình vẽ như Hình 2. b. Thứ tự các số nguyên. – Mọi số nguyên âm đều nhỏ hơn 0, do đó đều nhỏ hơn mọi số nguyên dương. – Nếu a và b là hai số nguyên dương và a b thì a b. Chú ý: Kí hiệu a b có nghĩa là “a b hoặc a b”. B. BÀI TẬP TRẮC NGHIỆM I. MỨC ĐỘ NHẬN BIẾT. II. MỨC ĐỘ THÔNG HIỂU. III. MỨC ĐỘ VẬN DỤNG. IV. MỨC ĐỘ VẬN DỤNG CAO.
Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề bội chung, bội chung nhỏ nhất
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề bội chung, bội chung nhỏ nhất, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT 1. Bội chung. * Bội chung của hai hay nhiều số là bội của tất cả các số đó. * Kí hiệu tập hợp các bội chung của a và b là BC a b. * Cách tìm bội chung của hai số a và b: Viết tập hợp các bội của a và bội của b B a B b. Tìm những phần tử chung của B a và B b. 2. Bội chung nhỏ nhất. * Bội chung nhỏ nhất của hai hay nhiều số là số nhỏ nhất khác 0 trong tập hợp các bội chung của các số đó. * Bội chung nhỏ nhất của a và b kí hiệu là BC a b. * Muốn tìm BCNN của hai hay nhiều số lớn hơn 1, ta thực hiện ba bước sau: Bước 1: Phân tích mỗi số ra thừa số nguyên tố. Bước 2: Chọn ra các thừa số nguyên tố chung và riêng. Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN phải tìm. * Muốn tìm bội chung của các số đã cho, ta có thể tìm các bội của BCNN của các số đó. * Chú ý: Nếu các số đã cho từng đôi một nguyên tố cùng nhau thì BCNN của chúng là tích của các số đó. Trong các số đã cho, nếu số lớn nhất là bội của các số còn lại thì BCNN của các số đã cho chính là số lớn nhất ấy. Tất cả các bội chung của a và b đều là bội của BC a b. Với mọi số tự nhiên a và b (khác 0), ta có: BCNN a a BCNN a b BCNN a b. 3. Các dạng toán thường gặp. Dạng 1. Tìm bội chung, bội chung nhỏ nhất của hai hay nhiều số. * Để nhận biết một số là bội chung của hai số, ta kiểm tra xem số này có chia hết cho hai số đó hay không? * Để viết tập hợp các bội chung của hai hay nhiều số, ta viết tập hợp các bội của mỗi số rồi tìm giao của các tập hợp đó. * Thực hiện quy tắc “ba bước” để tìm BCNN của hai hay nhiều số đó là: Bước 1 : Phân tích mỗi số ra thừa số nguyên tố. Bước 2 : Chọn ra các thừa số nguyên tố chung và riêng. Bước 3 : Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN phải tìm. * Có thể nhẩm BCNN của hai hay nhiều số bằng cách nhân số lớn nhất lần lượt với 1 2 3 … cho đến khi được kết quả là một số chia hết cho các số còn lại. Dạng 2. Bài toán đưa về việc tìm BCNN của hai hay nhiều số. Phân tích đề bài, suy luận để đưa về việc tìm BCNN của hai hay nhiều số. Dạng 3. Bài toán đưa về việc tìm bội chung của hai hay nhiều số thỏa mãn điều kiện cho trước. Phân tích đề bài, suy luận để đưa về việc tìm bội chung của hai hay nhiều số cho trước. Tìm BCNN của các số đó. Tìm các bội của BCNN này. Chọn trong số đó các bội thỏa mãn điều kiện đã cho. Dạng 4. Vận dụng BCNN để tìm mẫu chung của hai hay nhiều phân số. Để quy đồng mẫu hai phân số ta phải tìm mẫu chung của hai phân số đó. Thông thường ta nên chọn mẫu chung là BCNN của hai mẫu. B. BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề số nguyên tố
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề số nguyên tố, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT 1. Số nguyên tố và hợp số. + Số nguyên tố là số tự nhiên lớn hơn 1 chỉ có hai ước là một và chính nó. + Hợp số là số tự nhiên lớn hơn 1 có nhiều hơn hai ước. 2. Phân tích một số ra thừa số nguyên tố. a) Phân tích một số tự nhiên lớn hơn 1 ra thừa số nguyên tố là viết số đó dưới dạng một tích các thừa số nguyên tố. b) Cách phân tích một số ra thừa số nguyên tố: Phân tích theo cột dọc hoặc dùng sơ đồ cây. 3. Các dạng toán thường gặp. Dạng 1: Nhận biết số nguyên tố. Phương pháp: + Căn cứ vào định nghĩa số nguyên tố. + Căn cứ vào các dấu hiệu chia hết. Dạng 2: Nhận biết hợp số. Phương pháp: + Căn cứ vào định nghĩa hợp số. + Căn cứ vào các dấu hiệu chia hết. Dạng 3: Phân tích một số ra thừa số nguyên tố. Phương pháp: + Căn cứ vào định nghĩa phân tích một số ra thừa số nguyên tố. + Căn cứ vào các dấu hiệu chia hết để phân tích một số ra thừa số nguyên tố. + Vận dụng phân tích một số ra thừa số nguyên tố để giải các bài toán có liên quan đến ước số. B. BÀI TẬP TRẮC NGHIỆM Dạng 1: Nhận biết số nguyên tố. Dạng 2: Nhận biết hợp số. Dạng 3: Phân tích một số ra thừa số nguyên tố.