Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bộ đề tham khảo cuối học kỳ 2 Toán 8 năm 2023 - 2024 phòng GDĐT TP Hải Dương

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 bộ đề tham khảo kiểm tra cuối học kỳ 2 môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Hải Dương, tỉnh Hải Dương; các đề thi được biên soạn theo hình thức 30% trắc nghiệm + 70% tự luận, thời gian làm bài 90 phút; đề thi có ma trận, bảng đặc tả, đáp án và hướng dẫn chấm điểm. 1. BIỂU THỨC ĐẠI SỐ. Phân thức đại số. Tính chất cơ bản của phân thức đại số. Các phép toán cộng, trừ, nhân, chia các phân thức đại số. * Nhận biết: Nhận biết được các khái niệm cơ bản về phân thức đại số: định nghĩa; điều kiện xác định; giá trị của phân thức đại số; hai phân thức bằng nhau. * Thông hiểu: Mô tả được những tính chất cơ bản của phân thức đại số. * Vận dụng: – Thực hiện được các phép tính: phép cộng, phép trừ, phép nhân, phép chia đối với hai phân thức đại số. – Vận dụng được các tính chất giao hoán, kết hợp, phân phối của phép nhân đối với phép cộng, quy tắc dấu ngoặc với phân thức đại số đơn giản trong tính toán. 2. HÀM SỐ VÀ ĐỒ THỊ. Hàm số và đồ thị. * Nhận biết: – Nhận biết được những mô hình thực tế dẫn đến khái niệm hàm số. – Nhận biết được đồ thị hàm số. * Thông hiểu: – Tính được giá trị của hàm số khi hàm số đó xác định bởi công thức. – Xác định được toạ độ của một điểm trên mặt phẳng toạ độ. – Xác định được một điểm trên mặt phẳng toạ độ khi biết toạ độ của nó. Hàm số bậc nhất y = ax + b (a ≠ 0) và đồ thị. Hệ số góc của đường thẳng y = ax + b (a ≠ 0). * Nhận biết: Nhận biết được khái niệm hệ số góc của đường thẳng y = ax + b (a ≠ 0). * Thông hiểu: – Thiết lập được bảng giá trị của hàm số bậc nhất y = ax + b (a ≠ 0). – Sử dụng được hệ số góc của đường thẳng để nhận biết và giải thích được sự cắt nhau hoặc song song của hai đường thẳng cho trước. * Vận dụng: – Vẽ được đồ thị của hàm số bậc nhất y = ax + b (a ≠ 0). – Vận dụng được hàm số bậc nhất và đồ thị vào giải quyết một số bài toán thực tiễn (đơn giản, quen thuộc) (ví dụ: bài toán về chuyển động đều trong Vật lí). * Vận dụng cao: Vận dụng được hàm số bậc nhất và đồ thị vào giải quyết một số bài toán (phức hợp, không quen thuộc) có nội dung thực tiễn. 3. PHƯƠNG TRÌNH. Phương trình bậc nhất. * Vận dụng: – Giải được phương trình bậc nhất một ẩn. – Giải quyết được một số vấn đề thực tiễn (đơn giản, quen thuộc) gắn với phương trình bậc nhất (ví dụ: các bài toán liên quan đến chuyển động trong Vật lí, các bài toán liên quan đến Hoá học). 4. CÁC HÌNH KHỐI TRONG THỰC TIỄN. Hình chóp tam giác đều, hình chóp tứ giác đều. * Nhận biết: Mô tả (đỉnh, mặt đáy, mặt bên, cạnh bên) được hình chóp tam giác đều và hình chóp tứ giác đều. * Thông hiểu: – Tạo lập được hình chóp tam giác đều và hình chóp tứ giác đều. – Tính được diện tích xung quanh, thể tích của một hình chóp tam giác đều và hình chóp tứ giác đều. – Giải quyết được một số vấn đề thực tiễn (đơn giản, quen thuộc) gắn với việc tính thể tích, diện tích xung quanh của hình chóp tam giác đều và hình chóp tứ giác đều (ví dụ: tính thể tích hoặc diện tích xung quanh của một số đồ vật quen thuộc có dạng hình chóp tam giác đều và hình chóp tứ giác đều). * Vận dụng: Giải quyết được một số vấn đề thực tiễn gắn với việc tính thể tích, diện tích xung quanh của hình chóp tam giác đều và hình chóp tứ giác đều. 5. ĐỊNH LÍ PYTHAGORE. Định lí pythagore. * Thông hiểu: Giải thích được định lí Pythagore. * Vận dụng: Tính được độ dài cạnh trong tam giác vuông bằng cách sử dụng định lí Pythagore. 6. HÌNH ĐỒNG DẠNG. Tam giác đồng dạng. * Thông hiểu: – Mô tả được định nghĩa của hai tam giác đồng dạng. – Giải thích được các trường hợp đồng dạng của hai tam giác, của hai tam giác vuông. * Vận dụng: Giải quyết được một số vấn đề thực tiễn (đơn giản, quen thuộc) gắn với việc vận dụng kiến thức về hai tam giác đồng dạng (ví dụ: tính độ dài đường cao hạ xuống cạnh huyền trong tam giác vuông bằng cách sử dụng mối quan hệ giữa đường cao đó với tích của hai hình chiếu của hai cạnh góc vuông lên cạnh huyền; đo gián tiếp chiều cao của vật; tính khoảng cách giữa hai vị trí trong đó có một vị trí không thể tới được). * Vận dụng cao: Giải quyết được một số vấn đề thực tiễn (phức hợp, không quen thuộc) gắn với việc vận dụng kiến thức về hai tam giác đồng dạng. Hình đồng dạng. Nhận biết: – Nhận biết được hình đồng dạng phối cảnh (hình vị tự), hình đồng dạng qua các hình ảnh cụ thể. – Nhận biết được vẻ đẹp trong tự nhiên, nghệ thuật, kiến trúc, công nghệ chế tạo … biểu hiện qua hình đồng dạng. 7. MỘT SỐ YẾU TỐ XÁC SUẤT. Mô tả xác suất của biến cố ngẫu nhiên trong một số ví dụ đơn giản. Mối liên hệ giữa xác suất thực nghiệm của một biến cố với xác suất của biến cố đó. * Nhận biết: Nhận biết được mối liên hệ giữa xác suất thực nghiệm của một biến cố với xác suất của biến cố đó thông qua một số ví dụ đơn giản. * Vận dụng: Sử dụng được tỉ số để mô tả xác suất của một biến cố ngẫu nhiên trong một số ví dụ đơn giản.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 (HK2) lớp 8 môn Toán năm học 2016 2017 trường THCS Hòa Phú TP. HCM
Nội dung Đề thi học kì 2 (HK2) lớp 8 môn Toán năm học 2016 2017 trường THCS Hòa Phú TP. HCM Bản PDF - Nội dung bài viết Đề thi học kì 2 (HK2) lớp 8 môn Toán năm học 2016-2017 trường THCS Hòa Phú TP. HCM Đề thi học kì 2 (HK2) lớp 8 môn Toán năm học 2016-2017 trường THCS Hòa Phú TP. HCM Đề thi HK2 Toán lớp 8 năm học 2016 - 2017 trường THCS Hòa Phú - TP. HCM bao gồm 6 câu hỏi trắc nghiệm và 5 bài toán tự luận. Đề thi có đáp án và lời giải chi tiết. Dưới đây là một số bài toán trong đề: Một hình lăng trụ đứng có đáy là tam giác vuông (như hình vẽ). Độ dài hai cạnh góc vuông của đáy là 5cm và 12cm, chiều cao của lăng trụ là 8cm. Yêu cầu: Tính diện tích xung quanh và thể tích của hình lăng trụ đó. Bình đi xe đạp từ nhà đến trường với vận tốc 15 km/h. Khi tan học về nhà Bình đi với vận tốc 12km/h nên thời gian về nhiều hơn thời gian đi 6 phút. Hỏi nhà Bình cách trường bao xa? Đề thi đã được giải đáp chi tiết và đúng đắn để giúp học sinh hiểu rõ và tự tin trong quá trình ôn tập và kiểm tra cuối học kỳ 2.
Đề thi học kì 2 (HK2) lớp 8 môn Toán năm học 2016 2017 phòng GD và ĐT thành phố Tân An Long An
Nội dung Đề thi học kì 2 (HK2) lớp 8 môn Toán năm học 2016 2017 phòng GD và ĐT thành phố Tân An Long An Bản PDF Bài thi học kỳ 2 môn Toán lớp 8 năm học 2016-2017 do phòng GD và ĐT thành phố Tân An, Long An tổ chức có đặc điểm như sau: đề bài gồm 16 câu hỏi trắc nghiệm và 3 bài toán tự luận.Trong số đề thi này, chúng ta có thể lựa chọn một số bài toán để phân tích chi tiết như sau:- Bài toán 1: Hai xe máy khởi hành từ điểm A đến điểm B cùng một thời điểm. Vận tốc của xe thứ nhất là 40km/h và của xe thứ hai là 25km/h. Biết rằng xe thứ hai đến chậm hơn xe thứ nhất 1 giờ 30 phút. Yêu cầu tính độ dài quãng đường AB.- Bài toán 2: Cho tam giác ABC. AD là tia phân giác của góc BAC. Yêu cầu tính độ dài đoạn DC khi biết AB = 5cm, AC = 8cm và BD = 3cm.- Bài toán 3: Cho tam giác ABC vuông tại A, có đường cao AH. Để chứng minh hai tam giác ABC và HBA đồng dạng, trước tiên cần tính độ dài BC. Sau đó, chứng minh rằng AB^2 = BH.BC. Cuối cùng, vẽ trung tuyến AM và xác định điểm E trên tia đối của tia MA sao cho ME = 5cm, điểm F trên tia đối của tia BA sao cho BF = 6cm. Chứng minh rằng BC // EF.Để phân tích một cách cụ thể và dễ hiểu, chúng ta có thể sử dụng phiếu thi để giải thích từng bước giải các bài toán trên. Như vậy, người đọc dễ dàng nắm bắt cách giải và hiểu được từng bước tính toán một cách rõ ràng.Qua bài thi này, học sinh lớp 8 sẽ có cơ hội thử thách và cải thiện kỹ năng giải toán của mình. Các bài toán đãi khá đa dạng về nội dung và yêu cầu tư duy logic, giúp học sinh rèn luyện sự tỉ mỉ, kiên nhẫn và khả năng tư duy sáng tạo.Tổ chức đề thi học kỳ 2 môn Toán lớp 8 năm học 2016-2017 này là một cách để đánh giá kiến thức và kỹ năng của học sinh sau một kỳ học.
Đề thi học kì 2 (HK2) lớp 8 môn Toán năm học 2016 2017 trường THCS Tịnh Bình Quãng Ngãi
Nội dung Đề thi học kì 2 (HK2) lớp 8 môn Toán năm học 2016 2017 trường THCS Tịnh Bình Quãng Ngãi Bản PDF Đề thi học kỳ 2 lớp 8 môn Toán năm học 2016-2017 trường THCS Tịnh Bình, Quãng Ngãi, bao gồm 6 bài toán tự luận, được đính kèm lời giải chi tiết. Dưới đây là một số bài toán trong đề:Bài toán 1:Giải bài toán bằng cách lập phương trình: Lúc 6 giờ sáng, một xe máy khởi hành từ A để đi đến B. Đến 7 giờ 30 phút, một ôtô thứ hai cũng khởi hành từ A để đi đến B với vận tốc lớn hơn ôtô thứ nhất là 20km/h và hai xe gặp nhau lúc 10 giờ 30. Tính vận tốc của xe máy và ôtô. (Xe máy và ôtô không bị hư hỏng hay dừng lại dọc đường).Bài toán 2:Cho hình lăng trụ đứng ABC.A’B’C’ có chiều cao AA’ = 6cm, đáy là tam giác vuông có hai cạnh góc vuông AB = 4cm và AC = 5cm. Tính thể tích của hình lăng trụ.Bài toán 3:Cho hình thang vuông ABCD có AB//CD (góc A bằng 90 độ), AB = 4cm, CD = 9cm, AD = 6cm.a/ Chứng minh hai tam giác BAD và ADC đồng dạng.b/ Chứng minh AC vuông góc với BD.c/ Gọi O là giao điểm của AC và BD. Tính tỉ số diện tích hai tam giác AOB và COD.d/ Gọi K là giao điểm của DA và CB. Tính độ dài KA.Trên đây là nội dung đề thi học kỳ 2 lớp 8 môn Toán năm học 2016-2017 tại trường THCS Tịnh Bình, Quãng Ngãi. Đề bao gồm các bài toán tự luận và được cung cấp kèm lời giải chi tiết. Đây là một số bài toán trong đề, bao gồm việc giải quyết bài toán bằng cách lập phương trình, tính thể tích của hình lăng trụ, chứng minh đồng dạng của hai tam giác và tính tỉ số diện tích.. Bằng cách thực hiện từng bước giải quyết từng bài toán, giáo viên giải thích chi tiết và cung cấp các phương pháp giải quyết.
Đề thi học kì 2 (HK2) lớp 8 môn Toán năm học 2016 2017 trường THCS Đức Phổ Lâm Đồng
Nội dung Đề thi học kì 2 (HK2) lớp 8 môn Toán năm học 2016 2017 trường THCS Đức Phổ Lâm Đồng Bản PDF - Nội dung bài viết Đề thi học kì 2 (HK2) lớp 8 môn Toán năm học 2016-2017 trường THCS Đức Phổ Lâm Đồng Đề thi học kì 2 (HK2) lớp 8 môn Toán năm học 2016-2017 trường THCS Đức Phổ Lâm Đồng Đề thi học kỳ 2 môn Toán lớp 8 năm học 2016-2017 tại trường THCS Đức Phổ - Lâm Đồng bao gồm 10 bài toán tự luận, kèm theo lời giải chi tiết. Dưới đây là một số bài toán trong đề: Bài 1: Xác định hệ số a, b của phương trình bậc nhất 2x - 3 = 0. Bài 2: Cho hình lăng trụ đứng có đáy là tam giác đều cạnh 3cm và chiều cao 5cm. Tính diện tích xung quanh của hình lăng trụ đó. Bài 3: Một người đi xe máy từ điểm A đến điểm B với vận tốc trung bình là 50km/h. Khi trở về, người đó đi với vận tốc trung bình là 40km/h, nên thời gian trở về nhiều hơn thời gian đi là 30 phút. Tính độ dài quãng đường AB. Đề thi nêu qua một số bài toán đặc trưng trong đề và bao gồm lời giải chi tiết để học sinh nắm vững các phương pháp giải toán. Điều này giúp học sinh hiểu rõ từng bước giải quyết vấn đề và áp dụng vào các bài tương tự.